期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于数据取值规则的入侵检测技术
1
作者 游大涛 周清雷 董西广 《微电子学与计算机》 CSCD 北大核心 2008年第11期125-128,共4页
目前的入侵检测系统往往利用系统调用序列来设计,而忽略了系统调用序列所运行的数据环境,因此无法应对那些不改变系统调用序列的新型攻击.提出了一种新的入侵检测模型,它结合系统调用序列及其运行的数据环境来进行检测,通过学习系统调... 目前的入侵检测系统往往利用系统调用序列来设计,而忽略了系统调用序列所运行的数据环境,因此无法应对那些不改变系统调用序列的新型攻击.提出了一种新的入侵检测模型,它结合系统调用序列及其运行的数据环境来进行检测,通过学习系统调用序列的数据取值规则,增强模型的检测能力.实验结果表明,与现有模型相比,该方法具有检测效率高、误警率低及训练阶段时空开销小的优点. 展开更多
关键词 系统调用 取值规则 异常入侵检测
下载PDF
等价电子组态nl^N光谱项的推求法
2
作者 刘雪 骆定法 +1 位作者 朱德忠 贺媛 《聊城师院学报(自然科学版)》 2001年第1期61-65,104,共6页
从等价电子组态的“自旋因式化”出发 ,导出了 ns N~ nh N 组态的 Lα、Lβ取值规则 。
关键词 等价电子 组态 “自旋因式化” 取值规则 原子能级 原子结构 原子光谱项 推求法
下载PDF
Clustering: from Clusters to Knowledge
3
作者 Peter Grabusts 《Computer Technology and Application》 2013年第6期284-290,共7页
Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities... Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities in intelligent data analyzing applications are mostly represented with the help of IF-THEN rules. With the help of these rules the following tasks are solved: prediction, classification, pattern recognition and others. Using different approaches---clustering algorithms, neural network methods, fuzzy rule processing methods--we can extract rules that in an understandable language characterize the data. This allows interpreting the data, finding relationships in the data and extracting new rules that characterize them. Knowledge acquisition in this paper is defined as the process of extracting knowledge from numerical data in the form of rules. Extraction of rules in this context is based on clustering methods K-means and fuzzy C-means. With the assistance of K-means, clustering algorithm rules are derived from trained neural networks. Fuzzy C-means is used in fuzzy rule based design method. Rule extraction methodology is demonstrated in the Fisher's Iris flower data set samples. The effectiveness of the extracted rules is evaluated. Clustering and rule extraction methodology can be widely used in evaluating and analyzing various economic and financial processes. 展开更多
关键词 Data analysis clustering algorithms K-MEANS fuzzy C-means rule extraction.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部