期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
二维随机变量取值F事件概率的混合矩刻划
1
作者 刘兆君 吕永敬 《山东师范大学学报(自然科学版)》 CAS 2000年第4期361-366,共6页
主要运用混合矩对二维随机变量在某点附近取值这一F概率进行了刻划 。
关键词 F事件概率 隶属函数 混合矩 二维随机变量 二阶矩刻划 联合密度 置信度 取值规律
下载PDF
初始值对细胞神经网络混沌特性的影响 被引量:3
2
作者 朱艳平 《赤峰学院学报(自然科学版)》 2016年第1期38-40,共3页
为了能使细胞神经网络系统产生混沌吸引子和混沌信号,以便于将其作为密钥源应用于加密系统中,以四维CNN、五维CNN和六维CNN为例,对细胞神经网络的初始值进行研究.仿真实验得出能够产生混沌特性的初始值取值规律,这一结果将有助于细胞神... 为了能使细胞神经网络系统产生混沌吸引子和混沌信号,以便于将其作为密钥源应用于加密系统中,以四维CNN、五维CNN和六维CNN为例,对细胞神经网络的初始值进行研究.仿真实验得出能够产生混沌特性的初始值取值规律,这一结果将有助于细胞神经网络在加密领域中的应用研究. 展开更多
关键词 细胞神经网络 初始值 混沌特性 取值规律 加密
下载PDF
A bearing fault feature extraction method based on cepstrum pre-whitening and a quantitative law of symplectic geometry mode decomposition 被引量:1
3
作者 Chen Yiya Jia Minping Yan Xiaoan 《Journal of Southeast University(English Edition)》 EI CAS 2021年第1期33-41,共9页
In order to extract the fault feature of the bearing effectively and prevent the impact components caused by bearing damage being interfered with by discrete frequency components and background noise,a method of fault... In order to extract the fault feature of the bearing effectively and prevent the impact components caused by bearing damage being interfered with by discrete frequency components and background noise,a method of fault feature extraction based on cepstrum pre-whitening(CPW)and a quantitative law of symplectic geometry mode decomposition(SGMD)is proposed.First,CPW is performed on the original signal to enhance the impact feature of bearing fault and remove the periodic frequency components from complex vibration signals.The pre-whitening signal contains only background noise and non-stationary shock caused by damage.Secondly,a quantitative law that the number of effective eigenvalues of the Hamilton matrix is twice the number of frequency components in the signal during SGMD is found,and the quantitative law is verified by simulation and theoretical derivation.Finally,the trajectory matrix of the pre-whitening signal is constructed and SGMD is performed.According to the quantitative law,the corresponding feature vector is selected to reconstruct the signal.The Hilbert envelope spectrum analysis is performed to extract fault features.Simulation analysis and application examples prove that the proposed method can clearly extract the fault feature of bearings. 展开更多
关键词 cepstrum pre-whitening symplectic geometry mode decomposition EIGENVALUE quantitative law feature extraction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部