Three Dimensional Finite Element Method(3D-FEM)has been used to model the deviatoric stress field in a forsterite aggregate with a sandwich geometry:two forsterite cubes aligned in the same crystallographic orientatio...Three Dimensional Finite Element Method(3D-FEM)has been used to model the deviatoric stress field in a forsterite aggregate with a sandwich geometry:two forsterite cubes aligned in the same crystallographic orientation(the"breads")sandwich a third forsterite cube(the"filling"),which might have an identical or different crystallographic orientation.The results show that there is no von Mises stress in the forsterite sandwich if the sandwiching and sandwiched forsterite cubes are aligned in the same crystallographic orientation.If the crystallographic orientations are different,however,von Mises stress and heterogeneous stress distribution occur both along the boundary and in the forsterite cubes.For the investigated P-T conditions(up to 6.4GPa and 500°C),the resulted deviatoric stress is much lower than the yield strength of forsterite,so that higher P,higher T,or other means to create higher deviatoric stress is necessary,in order to constrain the yielding behavior of forsterite.展开更多
基金supported by National Natural Science Foundation of China(Grant No.41090371)
文摘Three Dimensional Finite Element Method(3D-FEM)has been used to model the deviatoric stress field in a forsterite aggregate with a sandwich geometry:two forsterite cubes aligned in the same crystallographic orientation(the"breads")sandwich a third forsterite cube(the"filling"),which might have an identical or different crystallographic orientation.The results show that there is no von Mises stress in the forsterite sandwich if the sandwiching and sandwiched forsterite cubes are aligned in the same crystallographic orientation.If the crystallographic orientations are different,however,von Mises stress and heterogeneous stress distribution occur both along the boundary and in the forsterite cubes.For the investigated P-T conditions(up to 6.4GPa and 500°C),the resulted deviatoric stress is much lower than the yield strength of forsterite,so that higher P,higher T,or other means to create higher deviatoric stress is necessary,in order to constrain the yielding behavior of forsterite.