A correlation equation between the UV absorption wavenumbers of 1,4-disubstituted benzenes and the excited-state substituent constant was obtained. For 80 sorts of 1,4- disubstituted benzenes, the correlation coeffici...A correlation equation between the UV absorption wavenumbers of 1,4-disubstituted benzenes and the excited-state substituent constant was obtained. For 80 sorts of 1,4- disubstituted benzenes, the correlation coefficient was 0.9805, and the standard deviation was only 672.27 cm^-1. The results imply that the excited-state substituent constant can be used productively for research on UV energy of 1,4-disubstituted benzenes. The present method provides a new avenue to study the UV absorption spectra of aromatic systems with the excited-state substituent constant, and it is helpful to understand the effect of substituent electrostatic effects on the chemical and physical properties of conjugated compounds with multiple substituents in excited state.展开更多
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20772028 and No.20472019), the Natural Science Foundation of Hunan Province (No.06JJ2002), and the Scientific Research Fund of Hunan Provincial Education Commission.
文摘A correlation equation between the UV absorption wavenumbers of 1,4-disubstituted benzenes and the excited-state substituent constant was obtained. For 80 sorts of 1,4- disubstituted benzenes, the correlation coefficient was 0.9805, and the standard deviation was only 672.27 cm^-1. The results imply that the excited-state substituent constant can be used productively for research on UV energy of 1,4-disubstituted benzenes. The present method provides a new avenue to study the UV absorption spectra of aromatic systems with the excited-state substituent constant, and it is helpful to understand the effect of substituent electrostatic effects on the chemical and physical properties of conjugated compounds with multiple substituents in excited state.