A model is presented to describe a compensation mechanism for semi-insulating 6H-SiC grown with the intentional doping of vanadium. Because we found nitrogen to be the principal shallow donor impurity in SiC by second...A model is presented to describe a compensation mechanism for semi-insulating 6H-SiC grown with the intentional doping of vanadium. Because we found nitrogen to be the principal shallow donor impurity in SiC by secondary ion mass spectroscopy (SIMS) measurements, semi-insulating properties in SiC are achieved by compensating the nitrogen donor with the vanadium deep acceptor level. The presence of different vanadium charge states V^3+ and V^4+ is detected by electron paramagnetic resonance and optical absorption measurements,which coincides with the results obtained by SIMS measurements. Both optical absorption and low temperature photoluminescence measurements reveal that the vanadium acceptor level is located at 0.62eV below the conduction band in 6H-SiC.展开更多
Deep level transient Fourier spectroscopy (DLTFS) measurements are used to characterize the deep impurity levels in n-type 4H-SiC by vanadium ions implantation. Two acceptor levels of vanadium at Ec - 0.81 and Ec - ...Deep level transient Fourier spectroscopy (DLTFS) measurements are used to characterize the deep impurity levels in n-type 4H-SiC by vanadium ions implantation. Two acceptor levels of vanadium at Ec - 0.81 and Ec - 1.02eV with the electron capture cross section of 7.0 × 10^16 and 6.0 × 10^-16 cm^2 are observed, respectively. Low-temperature photoluminescence measurements in the range of 1.4-3.4eV are also performed on the sample, which reveals the formation of two electron traps at 0.80 and 1. 16eV below the conduction band. These traps indicate that vanadium doping leads to the formation of two deep acceptor levels in 4H-SiC,with the location of 0.8±0.01 and 1. 1 ±0.08eV below the conduction band.展开更多
文摘A model is presented to describe a compensation mechanism for semi-insulating 6H-SiC grown with the intentional doping of vanadium. Because we found nitrogen to be the principal shallow donor impurity in SiC by secondary ion mass spectroscopy (SIMS) measurements, semi-insulating properties in SiC are achieved by compensating the nitrogen donor with the vanadium deep acceptor level. The presence of different vanadium charge states V^3+ and V^4+ is detected by electron paramagnetic resonance and optical absorption measurements,which coincides with the results obtained by SIMS measurements. Both optical absorption and low temperature photoluminescence measurements reveal that the vanadium acceptor level is located at 0.62eV below the conduction band in 6H-SiC.
文摘Deep level transient Fourier spectroscopy (DLTFS) measurements are used to characterize the deep impurity levels in n-type 4H-SiC by vanadium ions implantation. Two acceptor levels of vanadium at Ec - 0.81 and Ec - 1.02eV with the electron capture cross section of 7.0 × 10^16 and 6.0 × 10^-16 cm^2 are observed, respectively. Low-temperature photoluminescence measurements in the range of 1.4-3.4eV are also performed on the sample, which reveals the formation of two electron traps at 0.80 and 1. 16eV below the conduction band. These traps indicate that vanadium doping leads to the formation of two deep acceptor levels in 4H-SiC,with the location of 0.8±0.01 and 1. 1 ±0.08eV below the conduction band.