A model is presented to describe a compensation mechanism for semi-insulating 6H-SiC grown with the intentional doping of vanadium. Because we found nitrogen to be the principal shallow donor impurity in SiC by second...A model is presented to describe a compensation mechanism for semi-insulating 6H-SiC grown with the intentional doping of vanadium. Because we found nitrogen to be the principal shallow donor impurity in SiC by secondary ion mass spectroscopy (SIMS) measurements, semi-insulating properties in SiC are achieved by compensating the nitrogen donor with the vanadium deep acceptor level. The presence of different vanadium charge states V^3+ and V^4+ is detected by electron paramagnetic resonance and optical absorption measurements,which coincides with the results obtained by SIMS measurements. Both optical absorption and low temperature photoluminescence measurements reveal that the vanadium acceptor level is located at 0.62eV below the conduction band in 6H-SiC.展开更多
文摘A model is presented to describe a compensation mechanism for semi-insulating 6H-SiC grown with the intentional doping of vanadium. Because we found nitrogen to be the principal shallow donor impurity in SiC by secondary ion mass spectroscopy (SIMS) measurements, semi-insulating properties in SiC are achieved by compensating the nitrogen donor with the vanadium deep acceptor level. The presence of different vanadium charge states V^3+ and V^4+ is detected by electron paramagnetic resonance and optical absorption measurements,which coincides with the results obtained by SIMS measurements. Both optical absorption and low temperature photoluminescence measurements reveal that the vanadium acceptor level is located at 0.62eV below the conduction band in 6H-SiC.