Dirac's method which itself is for constrained Boson fields and particle systems is followed and developed to treat Dirac fields in light-front coordinates.
Tm^(3+) doped Na_5Lu_9F_(32) single crystal with high optical quality was grown by an improved Bridgman method. The Judd-Ofelt intensity parameters ?_t(t=2, 4, 6) were calculated according to the measured absorption s...Tm^(3+) doped Na_5Lu_9F_(32) single crystal with high optical quality was grown by an improved Bridgman method. The Judd-Ofelt intensity parameters ?_t(t=2, 4, 6) were calculated according to the measured absorption spectra and physical-chemical properties of the obtained Na_5Lu_9F_(32) single crystal. The stimulated emission cross-section of the ~3F_4→~3H_6 transition(~1.8 μm) is 0.35×10^(-20) cm^2 for Tm^(3+) doped Na_5Lu_9F_(32) single crystal. The emission spectra under the excitation of 790 nm laser diode(LD) and fluorescence lifetime at 1.8 μm were measured to reveal the fluorescence properties of Tm^(3+) doped Na_5Lu_9F_(32) single crystal. The research results show that the Tm^(3+) doped Na_5Lu_9F_(32) single crystal has larger stimulated emission cross-section compared with other crystals. All these spectral properties suggest that this kind of Tm^(3+)doped Na_5Lu_9F_(32) crystal with high physical-chemical stability and high-efficiency emission at 1.8 μm may be used as potential laser materials for optical devices.展开更多
文摘Dirac's method which itself is for constrained Boson fields and particle systems is followed and developed to treat Dirac fields in light-front coordinates.
基金supported by the National Natural Science Foundation of China(Nos.51472125 and 51272109)the Natural Science Foundation of Zhejiang Province(No.LZ17E020001)K.C. Wong Magna Fund in Ningbo University
文摘Tm^(3+) doped Na_5Lu_9F_(32) single crystal with high optical quality was grown by an improved Bridgman method. The Judd-Ofelt intensity parameters ?_t(t=2, 4, 6) were calculated according to the measured absorption spectra and physical-chemical properties of the obtained Na_5Lu_9F_(32) single crystal. The stimulated emission cross-section of the ~3F_4→~3H_6 transition(~1.8 μm) is 0.35×10^(-20) cm^2 for Tm^(3+) doped Na_5Lu_9F_(32) single crystal. The emission spectra under the excitation of 790 nm laser diode(LD) and fluorescence lifetime at 1.8 μm were measured to reveal the fluorescence properties of Tm^(3+) doped Na_5Lu_9F_(32) single crystal. The research results show that the Tm^(3+) doped Na_5Lu_9F_(32) single crystal has larger stimulated emission cross-section compared with other crystals. All these spectral properties suggest that this kind of Tm^(3+)doped Na_5Lu_9F_(32) crystal with high physical-chemical stability and high-efficiency emission at 1.8 μm may be used as potential laser materials for optical devices.