Anyons can be used to realize quantum computation, because they are two-level systems in two dimensions. In this paper, we propose a scheme to simulate single-qubit gates and CNOT gate using Abelian anyons in the Kita...Anyons can be used to realize quantum computation, because they are two-level systems in two dimensions. In this paper, we propose a scheme to simulate single-qubit gates and CNOT gate using Abelian anyons in the Kitaev model. Two pairs of anyons (six spins) are used to realize single-qubit gates, while ten spins are needed for the CNOT gate. Based on these quantum gates, we show how to realize the Grover algorithm in a two-qubit system.展开更多
To minimize losses between harvest and retail display, a system is needed to track temperature and RH exposure of fresh produce and predict its quality at each step of the distribution chain. With accurate models, suc...To minimize losses between harvest and retail display, a system is needed to track temperature and RH exposure of fresh produce and predict its quality at each step of the distribution chain. With accurate models, such system could (1) identify problematic situations before losses occur; (2) become a management tool for decision makers; and (3) help quantify the real impact of individual inappropriate conditions. A project was initiated to develop models required for such a decision system. Because the data required to develop models were not available for most fruit and vegetables, a series of storage trials was planned for measuring changes in physiological and microbial quality, and development of physiological disorders and/or diseases, as a function of time, temperature and RH. To meet this objective, controlled environment mini-chambers were designed, built and instrumented for measuring the effect of traceable environmental conditions encountered during storage and transportation of fresh horticultural produce of similar size and shape as tomato. Detailed design and performance evaluation of these mini-chambers are presented.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 10874098the National Basic Research Program of China under Grant Nos. 2009CB929402, 2011CB9216002the Specialized Research Fund for the Doctoral Program of Education Ministry of China under Grant No. 20060003048
文摘Anyons can be used to realize quantum computation, because they are two-level systems in two dimensions. In this paper, we propose a scheme to simulate single-qubit gates and CNOT gate using Abelian anyons in the Kitaev model. Two pairs of anyons (six spins) are used to realize single-qubit gates, while ten spins are needed for the CNOT gate. Based on these quantum gates, we show how to realize the Grover algorithm in a two-qubit system.
文摘To minimize losses between harvest and retail display, a system is needed to track temperature and RH exposure of fresh produce and predict its quality at each step of the distribution chain. With accurate models, such system could (1) identify problematic situations before losses occur; (2) become a management tool for decision makers; and (3) help quantify the real impact of individual inappropriate conditions. A project was initiated to develop models required for such a decision system. Because the data required to develop models were not available for most fruit and vegetables, a series of storage trials was planned for measuring changes in physiological and microbial quality, and development of physiological disorders and/or diseases, as a function of time, temperature and RH. To meet this objective, controlled environment mini-chambers were designed, built and instrumented for measuring the effect of traceable environmental conditions encountered during storage and transportation of fresh horticultural produce of similar size and shape as tomato. Detailed design and performance evaluation of these mini-chambers are presented.