期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于受限玻尔兹曼机的疲劳脑电特性分析
被引量:
1
1
作者
甘达雲
谢云
+1 位作者
王明丽
卢扩锋
《测控技术》
2020年第2期98-103,共6页
为了准确提取和分类视觉疲劳所引起的脑电特征,以此提醒过度用眼的工作人员及时休息,提出了多通道受限玻尔兹曼机算法和卷积神经网络(CNN)算法结合的深度学习混合模型,利用该模型对枕叶区10个通道的脑电信号进行自动提取内在特征和分类...
为了准确提取和分类视觉疲劳所引起的脑电特征,以此提醒过度用眼的工作人员及时休息,提出了多通道受限玻尔兹曼机算法和卷积神经网络(CNN)算法结合的深度学习混合模型,利用该模型对枕叶区10个通道的脑电信号进行自动提取内在特征和分类。在基于SSVEP的视觉疲劳脑电数据集上进行评估,深度学习混合模型的平均准确率达到88. 63%,比传统的特征提取和分类方法高10%。实验结果证明了深度学习混合模型取得的分类效果较好,并且克服了传统手动提取特征方法不全面的不足,对疲劳脑电的研究具有现实的意义。
展开更多
关键词
稳态视觉诱发电位
疲劳脑电
受限玻尔兹曼机算法
卷积神经网络
下载PDF
职称材料
题名
基于受限玻尔兹曼机的疲劳脑电特性分析
被引量:
1
1
作者
甘达雲
谢云
王明丽
卢扩锋
机构
广东工业大学自动化学院
出处
《测控技术》
2020年第2期98-103,共6页
基金
广东省自然科学基金资助项目(2016A030313706)
文摘
为了准确提取和分类视觉疲劳所引起的脑电特征,以此提醒过度用眼的工作人员及时休息,提出了多通道受限玻尔兹曼机算法和卷积神经网络(CNN)算法结合的深度学习混合模型,利用该模型对枕叶区10个通道的脑电信号进行自动提取内在特征和分类。在基于SSVEP的视觉疲劳脑电数据集上进行评估,深度学习混合模型的平均准确率达到88. 63%,比传统的特征提取和分类方法高10%。实验结果证明了深度学习混合模型取得的分类效果较好,并且克服了传统手动提取特征方法不全面的不足,对疲劳脑电的研究具有现实的意义。
关键词
稳态视觉诱发电位
疲劳脑电
受限玻尔兹曼机算法
卷积神经网络
Keywords
SSVEP
fatigue EEG
restricted Boltzmann machines
convolutional neural network
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于受限玻尔兹曼机的疲劳脑电特性分析
甘达雲
谢云
王明丽
卢扩锋
《测控技术》
2020
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部