-
题名基于变中心互相关熵的比例自适应滤波算法研究
被引量:1
- 1
-
-
作者
柯捷
张余明
慕德俊
张佳庚
马文涛
-
机构
桂林航天工业学院计算机科学与工程学院
西北工业大学网络空间安全学院
西安交通大学网络信息中心
西安理工大学电气工程学院
-
出处
《计算机应用研究》
CSCD
北大核心
2021年第2期465-469,共5页
-
基金
广西创新驱动发展专项资金资助项目(桂科AA18118031)
桂林航天工业学院物联网与大数据应用研究基金资助项目(KJPT201809)
国家自然科学基金资助项目(61672433,61976175)。
-
文摘
针对传统自适应滤波算法对于非零均值非高斯噪声干扰环境下稀疏系统参数估计存在稳态精度低的问题,以变中心互相关熵为代价函数,引入比例更新机制,应用随机梯度法设计一种新的稀疏自适应滤波算法。变中心互相关熵的中心可位于任何位置,其可很好地匹配非零均值的误差分布,而比例更新机制为每个权值参数赋予可变的步长参数,因此可增强算法的跟踪能力。进一步设计在线学习方法来估计核宽度和中心位置,以提高算法性能。另外根据能量守恒关系研究了算法的收敛性。仿真实验结果表明,该算法相对于传统自适应滤波算法对于非零均值非高斯噪声环境下的稀疏参数估计具有明显的优越性和鲁棒性。
-
关键词
变中心互相关熵
比例更新
梯度法
稀疏系统辨识
非零均值非高斯噪声
-
Keywords
correntropy with variable center
proportional update
gradient method
sparse system identification
non-zero mean non-Gaussian noise
-
分类号
TN911.7
[电子电信—通信与信息系统]
TP301.6
[自动化与计算机技术—计算机系统结构]
-