期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
变位磁场作用电弧增材中电弧和熔池传热与流动数值模拟
1
作者 周祥曼 杨胜波 +4 位作者 王礴允 吴海华 田启华 付君健 张海鸥 《兵器材料科学与工程》 CAS CSCD 北大核心 2024年第1期17-25,共9页
为了揭示具有纵向和横向分量的外加变位磁场对TIG电弧增材成形过程中电弧和熔池传热与流动的影响机理,基于流体动力学软件Fluent,建立了电弧与熔池耦合的三维瞬态模型。对比分析了不同角度的变位磁场对电弧形貌、电磁力、热流密度、熔... 为了揭示具有纵向和横向分量的外加变位磁场对TIG电弧增材成形过程中电弧和熔池传热与流动的影响机理,基于流体动力学软件Fluent,建立了电弧与熔池耦合的三维瞬态模型。对比分析了不同角度的变位磁场对电弧形貌、电磁力、热流密度、熔池形貌及熔池速度场的影响规律与机理。结果表明:无外加磁场时,电弧与熔池对称分布,施加变位磁场时,电弧和熔池中产生周向旋转和偏向一侧的电磁力,使电弧与熔池发生旋转与偏移,熔池除了具有由内向外的流动,还具有围绕中心旋转和偏向一侧的流动;增大变位磁场的变位角度使横向磁场分量减小,纵向磁场分量增加,从而使偏向一侧的电磁力减小,周向旋转电磁力增大,进而使电弧偏转与熔池偏移减弱,熔池旋转流动趋势增强。研究结论可为后续磁控电弧增材制造传热、传质的机理分析及工艺参数的选择提供理论依据和参考。 展开更多
关键词 电弧增材制造 数值模拟 变位磁场 传热流动
下载PDF
外加变位磁场作用GTAW焊接电弧的数值模拟 被引量:2
2
作者 周祥曼 刘练 +5 位作者 陈永清 袁有录 田启华 杜义贤 何青松 付君健 《三峡大学学报(自然科学版)》 CAS 2021年第5期101-106,112,共7页
为了揭示外加变位磁场对GTAW焊接电弧的形态以及传热传质影响规律,建立了GTAW焊接电弧的数学模型;对比分析了无外加磁场,30°变位磁场,60°变位磁场作用下XZ截面(即Y=0截面)的电弧温度场、压强以及Z=7.5 mm截面电磁力矢量的变... 为了揭示外加变位磁场对GTAW焊接电弧的形态以及传热传质影响规律,建立了GTAW焊接电弧的数学模型;对比分析了无外加磁场,30°变位磁场,60°变位磁场作用下XZ截面(即Y=0截面)的电弧温度场、压强以及Z=7.5 mm截面电磁力矢量的变化规律;并在电弧空间取一条路径Path1(X方向),详细对比分析了此路径上的电流密度、电弧温度、X方向电磁力分量、Y方向电磁力分量、压强、X方向速度分量、Y方向速度分量的分布规律.结果显示:外加变位磁场作用下的XZ截面的电弧温度场、压强以及Z=7.5 mm截面电磁力矢量均不再呈现对称分布.在Path1上随着变位角度的增加,电弧X方向电磁力分量“波峰”上移、“波谷”下移;电弧Y方向电磁力分量由零变为“双峰分布”,再变为“单峰分布”,且“波峰”上移;电弧X方向速度分量由类似余弦函数分布逐渐变为“单峰”分布,且“波谷”下移;电弧Y方向速度分量由零逐渐变为类似正弦函数分布,且“波峰”下移,“波谷”上移. 展开更多
关键词 外加变位磁场 钨极惰性气体保护焊 焊接电弧 数值模拟
下载PDF
Spatially Periodic System with Infinite Globally Coupled Oscillators Driven by Temporal-Spatial Noise
3
作者 HANYin-Xia LIJing-Hui +1 位作者 ZHAOYing-Kui CHENShi-Gang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第1期92-96,共5页
In this paper, we study spatially periodic system with infinite globally coupled oscillators driven by temporal-spatial noise and subject to a constant force. The results show that the system exhibits the phenomena of... In this paper, we study spatially periodic system with infinite globally coupled oscillators driven by temporal-spatial noise and subject to a constant force. The results show that the system exhibits the phenomena of the non-equilibrium phase transition, transport of particles, and the anomalous hysteresis cycle for the mean field and the probability current. 展开更多
关键词 temporal-spatial noise non-equilibrium phase transition anomalous hysteresis cycle the mean field
下载PDF
Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP
4
作者 JianHua Du HangDong Wang +9 位作者 Qin Chen OianHui Mao Rajwali Khan BinJie XU YuXing Zhou YanNan Zhang JinHu Yang Bin Chen ChunMu Feng MingHu Fang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第5期21-26,共6页
After successfully growing single-crystal TaP, we measured its longitudinal resistivity (Pxx) and Hall resistivity (Pyx) at magnetic fields up to 9 T in the temperature range of 2-300 K. At 8 T, the magnetoresista... After successfully growing single-crystal TaP, we measured its longitudinal resistivity (Pxx) and Hall resistivity (Pyx) at magnetic fields up to 9 T in the temperature range of 2-300 K. At 8 T, the magnetoresistance (MR) reached 3.28 ×10^5% at 2 K, 176% at 300 K. Neither value appeared saturated. We confirmed that TaP is a hole-electron compensated semimetal with a low carrier concentration and high hole mobility ofμh=3.71 × 105 cm2/V s, and found that a magnetic-field-induced metal-insulator transition occurs at room temperature. Remarkably, because a magnetic field (H) was applied in parallel to the electric field (E), a negative MR due to a chiral anomaly was observed and reached -3000% at 9 T without any sign of saturation, either, which is in contrast to other Weyl semimetals (WSMs). The analysis of the Shubnikov-de Haas (SdH) oscillations superimposed on the MR revealed that a nontrivial Berry's phase with a strong offset of 0.3958, which is the characteristic feature of charge carriers enclosing a Weyl node. These results indicate that TaP is a promising candidate not only for revealing fundamental physics of the WSM state but also for some novel applications. 展开更多
关键词 Weyl semimetal positive and negative magnetoresistance Weyl fermions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部