Shear-wave velocity is a key parameter for calibrating monitoring time-lapse 4D seismic data during CO2-EOR (Enhanced Oil Recovery) and CO2 sequestration. However, actual S-wave velocity data are lacking, especially...Shear-wave velocity is a key parameter for calibrating monitoring time-lapse 4D seismic data during CO2-EOR (Enhanced Oil Recovery) and CO2 sequestration. However, actual S-wave velocity data are lacking, especially in 4D data for CO2 sequestration because wells are closed after the CO2 injection and seismic monitoring is continued but no well log data are acquired. When CO2 is injected into a reservoir, the pressure and saturation of the reservoirs change as well as the elastic parameters of the reservoir rocks. We propose a method to predict the S-wave velocity in reservoirs at different pressures and porosities based on the Hertz-Mindlin and Gassmann equations. Because the coordination number is unknown in the Hertz Mindlin equation, we propose a new method to predict it. Thus, we use data at different CO2 injection stages in the Gao89 well block, Shengli Oilfield. First, the sand and mud beds are separated based on the structural characteristics of the thin sand beds and then the S-wave velocity as a function of reservoir pressure and porosity is calculated. Finally, synthetic seismic seismograms are generated based on the predicted P- and S-wave velocities at different stages of CO2 injection.展开更多
The realization way of snake rolling was introduced. Flow velocity, strain and stress distribution of 7075 aluminum alloy plate during snake rolling and symmetrical rolling were analyzed in Deform 3D. Effects of veloc...The realization way of snake rolling was introduced. Flow velocity, strain and stress distribution of 7075 aluminum alloy plate during snake rolling and symmetrical rolling were analyzed in Deform 3D. Effects of velocity ratio, offset distance between two rolls and pass reduction on the distribution of equivalent strain and shear strain were analyzed. The results show that flow velocity and equivalent strain on the lower layer of the plate are larger than those of the upper layer because of the larger velocity of the lower roll and the gap is increased with the increase of velocity ratio and pass reduction. The shear strain of roiling direction in the center point is almost zero during symmetrical rolling, while it is much larger during snake rolling because of the existence of rub zone. The shear strain is increased with the increase of velocity ratio, offset distance and pass reduction. This additional shear strain is beneficial to improve the in_homogeneous strain distribution.展开更多
A CCD position detecting system measuring the displacement and deformation of structure is presented. The measure method takes advantage of the position detecting technique based on digital image processing. A bright ...A CCD position detecting system measuring the displacement and deformation of structure is presented. The measure method takes advantage of the position detecting technique based on digital image processing. A bright spot is pegged on the object to be measured and imaged to the target of CCD camera through a telescopic lens. The CCD target converts the optical signal to equivalent electric signal. The video frequency signal is digitized to an array of 512×512 pixels by the analog to digital converter (ADC), then transmitted to the computer. The computer controls the data acquisition, conducts image processing and detects the location of the target spot. Comparing the current position with the original position of the spot, the displacement of object is obtained. With the aid of analysis software, the system can achieve the resolution of 0 01 mm in the 6 m distance from the object to the point of observation. To meet the need of practice, the measuring distance can be extended to 100 m or even farther.展开更多
A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the densit...A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the density of any point with Shepard interpolation function.The influence of the diameter of interpolation is discussed which shows good robustness.The new approach is demonstrated on the minimum volume problem subjected to a displacement constraint.The rational approximation for material properties(RAMP) method and a dual programming optimization algorithm are used to penalize the intermediate density point to achieve nearly 0-1 solutions.Solutions are shown to meet stability,mesh dependence or non-checkerboard patterns of topology optimization without additional constraints.Finally,the computational efficiency is greatly improved by multithread parallel computing with OpenMP.展开更多
Landslide is one of the multitudinous serious geological hazards. The key to its control and reduction lies on dynamic monitoring and early warning. The article points out the insufficiency of traditional measuring me...Landslide is one of the multitudinous serious geological hazards. The key to its control and reduction lies on dynamic monitoring and early warning. The article points out the insufficiency of traditional measuring means applied for large-scale landslide monitoring and proposes the method for extensive landslide displacement field monitoring using high- resolution remote images. Matching of cognominal points is realized by using the invariant features of SIFT algorithm in image translation, rotation, zooming, and affine transformation, and through recognition and comparison of characteristics of high-resolution images in different landsliding periods. Following that, landslide displacement vector field can be made known by measuring the distances and directions between cognominal points. As evidenced by field application of the method for landslide monitoring at West Open Mine in Fushun city of China, the method has the attraction of being able to make areal measurement through satellite observation and capable of obtaining at the same time the information of large- area intensive displacement field, for facilitating automatic delimitation of extent of landslide displacement vector field and sliding mass. This can serve as a basis for making analysis of laws governing occurrence of landslide and adoption of countermeasures.展开更多
AIM: To investigate the liver stiffness measurement (LSM) applicability and variability with reference to three probe positions according to the region of liver biopsy. METHODS: The applicability for LSM was defined a...AIM: To investigate the liver stiffness measurement (LSM) applicability and variability with reference to three probe positions according to the region of liver biopsy. METHODS: The applicability for LSM was defined as at least 10 valid measurements with a success rate greater than 60% and an interquartile range/median LSM < 30%. The LSM variability compared the inter-position concordance and the concordance with FibroTest. RESULTS: Four hundred and forty two consecutive patients were included. The applicability of the anterior position (81%) was significantly higher than that of the reference (69%) and lower positions (68%), (both P = 0.0001). There was a signif icant difference (0.5 kPa, 95% CI 0.13-0.89; P < 0.0001) between mean LSM estimated at the reference position (9.3 kPa) vs the anterior position (8.8 kPa). Discordance between positions was associated with thoracic fold (P = 0.008). The discordance rate between the reference position result and FibroTest was higher when the 7.1 kPa cutoff was used to define advanced fibrosis instead of 8.8 kPa (33.6% vs 23.5%, P = 0.03).CONCLUSION: The anterior position of the probe should be the fi rst choice for LSM using Fibroscan, as it has a higher applicability without higher variability compared to the usual liver biopsy position.展开更多
Abstract Four successive mass selection lines of the Pacific oyster, Crassostrea gigas, selected for faster growth in breeding pro- grams in China were examined at ten polymorphic microsatellite loci to assess the lev...Abstract Four successive mass selection lines of the Pacific oyster, Crassostrea gigas, selected for faster growth in breeding pro- grams in China were examined at ten polymorphic microsatellite loci to assess the level of allelic diversity and estimate the effective population size. These data were compared with those of their base population. The results showed that the genetic variation of the four generations were maintained at high levels with an average allelic richness of 18.8-20.6, and a mean expected heterozygosity of 0.902-0.921. They were not reduced compared with those of their base population. Estimated effective population sizes based on temporal variances in microsatellite frequencies were smaller to that of sex ratio-corrected broodstock count estimates. Using a rela- tively large number ofbroodstock and keeping an equal sex ratio in the broodstock each generation may have contributed to retaining the original genetic diversity and maintaining relatively large effective population size. The results obtained in this study showed that the genetic variation was not affected greatly by mass selection progress and high genetic variation still existed in the mass selection lines, suggesting that there is still potential for increasing the gains in future generations of C. gigas. The present study provided im- portant information for future genetic improvement by selective breeding, and for the design of suitable management guidelines for genetic breeding of C. gigas.展开更多
Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which sa...Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which satisfy the stiffimss and rotational speed required to the spindle. A general full factorial design method was used to verify some factors that affect the natural frequency of a spindle. It is verified that the shorter shaft length and bearing span length represent the higher natural frequency, and there are some effects according to the change in the levels of factors. The detailed spindle dimension is determined by applying an EVD method, which can define the optimal bearing position through considering the limiting condition. Based on the estimated regression model, the optimal spindle size and bearing distance that can improve the primary natural frequency are obtained, and the influence of design factors on the natural frequency is also analyzed.展开更多
基金supported by the National High Techology Research and Development Program(No.2012AA050103)
文摘Shear-wave velocity is a key parameter for calibrating monitoring time-lapse 4D seismic data during CO2-EOR (Enhanced Oil Recovery) and CO2 sequestration. However, actual S-wave velocity data are lacking, especially in 4D data for CO2 sequestration because wells are closed after the CO2 injection and seismic monitoring is continued but no well log data are acquired. When CO2 is injected into a reservoir, the pressure and saturation of the reservoirs change as well as the elastic parameters of the reservoir rocks. We propose a method to predict the S-wave velocity in reservoirs at different pressures and porosities based on the Hertz-Mindlin and Gassmann equations. Because the coordination number is unknown in the Hertz Mindlin equation, we propose a new method to predict it. Thus, we use data at different CO2 injection stages in the Gao89 well block, Shengli Oilfield. First, the sand and mud beds are separated based on the structural characteristics of the thin sand beds and then the S-wave velocity as a function of reservoir pressure and porosity is calculated. Finally, synthetic seismic seismograms are generated based on the predicted P- and S-wave velocities at different stages of CO2 injection.
基金Projects(2012CB619505,2010CB731703)supported by the National Basic Research Program of ChinaProject(CX2013B065)supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(117308)supported by Postdoctoral Science Foundation of Central South University,China
文摘The realization way of snake rolling was introduced. Flow velocity, strain and stress distribution of 7075 aluminum alloy plate during snake rolling and symmetrical rolling were analyzed in Deform 3D. Effects of velocity ratio, offset distance between two rolls and pass reduction on the distribution of equivalent strain and shear strain were analyzed. The results show that flow velocity and equivalent strain on the lower layer of the plate are larger than those of the upper layer because of the larger velocity of the lower roll and the gap is increased with the increase of velocity ratio and pass reduction. The shear strain of roiling direction in the center point is almost zero during symmetrical rolling, while it is much larger during snake rolling because of the existence of rub zone. The shear strain is increased with the increase of velocity ratio, offset distance and pass reduction. This additional shear strain is beneficial to improve the in_homogeneous strain distribution.
文摘A CCD position detecting system measuring the displacement and deformation of structure is presented. The measure method takes advantage of the position detecting technique based on digital image processing. A bright spot is pegged on the object to be measured and imaged to the target of CCD camera through a telescopic lens. The CCD target converts the optical signal to equivalent electric signal. The video frequency signal is digitized to an array of 512×512 pixels by the analog to digital converter (ADC), then transmitted to the computer. The computer controls the data acquisition, conducts image processing and detects the location of the target spot. Comparing the current position with the original position of the spot, the displacement of object is obtained. With the aid of analysis software, the system can achieve the resolution of 0 01 mm in the 6 m distance from the object to the point of observation. To meet the need of practice, the measuring distance can be extended to 100 m or even farther.
基金Projects(11372055,11302033)supported by the National Natural Science Foundation of ChinaProject supported by the Huxiang Scholar Foundation from Changsha University of Science and Technology,ChinaProject(2012KFJJ02)supported by the Key Labortory of Lightweight and Reliability Technology for Engineering Velicle,Education Department of Hunan Province,China
文摘A methodology for topology optimization based on element independent nodal density(EIND) is developed.Nodal densities are implemented as the design variables and interpolated onto element space to determine the density of any point with Shepard interpolation function.The influence of the diameter of interpolation is discussed which shows good robustness.The new approach is demonstrated on the minimum volume problem subjected to a displacement constraint.The rational approximation for material properties(RAMP) method and a dual programming optimization algorithm are used to penalize the intermediate density point to achieve nearly 0-1 solutions.Solutions are shown to meet stability,mesh dependence or non-checkerboard patterns of topology optimization without additional constraints.Finally,the computational efficiency is greatly improved by multithread parallel computing with OpenMP.
文摘Landslide is one of the multitudinous serious geological hazards. The key to its control and reduction lies on dynamic monitoring and early warning. The article points out the insufficiency of traditional measuring means applied for large-scale landslide monitoring and proposes the method for extensive landslide displacement field monitoring using high- resolution remote images. Matching of cognominal points is realized by using the invariant features of SIFT algorithm in image translation, rotation, zooming, and affine transformation, and through recognition and comparison of characteristics of high-resolution images in different landsliding periods. Following that, landslide displacement vector field can be made known by measuring the distances and directions between cognominal points. As evidenced by field application of the method for landslide monitoring at West Open Mine in Fushun city of China, the method has the attraction of being able to make areal measurement through satellite observation and capable of obtaining at the same time the information of large- area intensive displacement field, for facilitating automatic delimitation of extent of landslide displacement vector field and sliding mass. This can serve as a basis for making analysis of laws governing occurrence of landslide and adoption of countermeasures.
文摘AIM: To investigate the liver stiffness measurement (LSM) applicability and variability with reference to three probe positions according to the region of liver biopsy. METHODS: The applicability for LSM was defined as at least 10 valid measurements with a success rate greater than 60% and an interquartile range/median LSM < 30%. The LSM variability compared the inter-position concordance and the concordance with FibroTest. RESULTS: Four hundred and forty two consecutive patients were included. The applicability of the anterior position (81%) was significantly higher than that of the reference (69%) and lower positions (68%), (both P = 0.0001). There was a signif icant difference (0.5 kPa, 95% CI 0.13-0.89; P < 0.0001) between mean LSM estimated at the reference position (9.3 kPa) vs the anterior position (8.8 kPa). Discordance between positions was associated with thoracic fold (P = 0.008). The discordance rate between the reference position result and FibroTest was higher when the 7.1 kPa cutoff was used to define advanced fibrosis instead of 8.8 kPa (33.6% vs 23.5%, P = 0.03).CONCLUSION: The anterior position of the probe should be the fi rst choice for LSM using Fibroscan, as it has a higher applicability without higher variability compared to the usual liver biopsy position.
基金supported by grants from the National High Technology Research and Development Program (2012AA10A405-6)National Natural Science Foundation of China (31372524)Special Fund for Independent Innovation of Shandong Province (2013CX80202)
文摘Abstract Four successive mass selection lines of the Pacific oyster, Crassostrea gigas, selected for faster growth in breeding pro- grams in China were examined at ten polymorphic microsatellite loci to assess the level of allelic diversity and estimate the effective population size. These data were compared with those of their base population. The results showed that the genetic variation of the four generations were maintained at high levels with an average allelic richness of 18.8-20.6, and a mean expected heterozygosity of 0.902-0.921. They were not reduced compared with those of their base population. Estimated effective population sizes based on temporal variances in microsatellite frequencies were smaller to that of sex ratio-corrected broodstock count estimates. Using a rela- tively large number ofbroodstock and keeping an equal sex ratio in the broodstock each generation may have contributed to retaining the original genetic diversity and maintaining relatively large effective population size. The results obtained in this study showed that the genetic variation was not affected greatly by mass selection progress and high genetic variation still existed in the mass selection lines, suggesting that there is still potential for increasing the gains in future generations of C. gigas. The present study provided im- portant information for future genetic improvement by selective breeding, and for the design of suitable management guidelines for genetic breeding of C. gigas.
基金Project(RTI04-01-03) supported by the Regional Technology Innovation Program of the Ministry of Knowledge Economy (MKE) of Korea
文摘Factors for determining the spindle size are the shaft diameter, positions of bearing and motor, and entire length of the spindle. Then, it is important to find the assembling of the optimal design variables, which satisfy the stiffimss and rotational speed required to the spindle. A general full factorial design method was used to verify some factors that affect the natural frequency of a spindle. It is verified that the shorter shaft length and bearing span length represent the higher natural frequency, and there are some effects according to the change in the levels of factors. The detailed spindle dimension is determined by applying an EVD method, which can define the optimal bearing position through considering the limiting condition. Based on the estimated regression model, the optimal spindle size and bearing distance that can improve the primary natural frequency are obtained, and the influence of design factors on the natural frequency is also analyzed.