提出一种基于偏差信息准则(deriance information criterion,DIC)的鲁棒贝叶斯混合分布模型选择算法.在变分逼近框架下,给出鲁棒贝叶斯混合模型的DIC计算公式;设计的模型选择算法能同时学习模型参数推断和进行模型选择,避免在大的候选...提出一种基于偏差信息准则(deriance information criterion,DIC)的鲁棒贝叶斯混合分布模型选择算法.在变分逼近框架下,给出鲁棒贝叶斯混合模型的DIC计算公式;设计的模型选择算法能同时学习模型参数推断和进行模型选择,避免在大的候选模型集中根据模型选择准则选取最优模型.给出试验参数初始值设置方法,在含有较多离群点的仿真数据和Old Faithful Geyser数据上的试验结果表明了好的性能:得到鲁棒的混合分量参数和较准确的混合分量个数.展开更多
Accurate displacement prediction is critical for the early warning of landslides.The complexity of the coupling relationship between multiple influencing factors and displacement makes the accurate prediction of displ...Accurate displacement prediction is critical for the early warning of landslides.The complexity of the coupling relationship between multiple influencing factors and displacement makes the accurate prediction of displacement difficult.Moreover,in engineering practice,insufficient monitoring data limit the performance of prediction models.To alleviate this problem,a displacement prediction method based on multisource domain transfer learning,which helps accurately predict data in the target domain through the knowledge of one or more source domains,is proposed.First,an optimized variational mode decomposition model based on the minimum sample entropy is used to decompose the cumulative displacement into the trend,periodic,and stochastic components.The trend component is predicted by an autoregressive model,and the periodic component is predicted by the long short-term memory.For the stochastic component,because it is affected by uncertainties,it is predicted by a combination of a Wasserstein generative adversarial network and multisource domain transfer learning for improved prediction accuracy.Considering a real mine slope as a case study,the proposed prediction method was validated.Therefore,this study provides new insights that can be applied to scenarios lacking sample data.展开更多
Weak feature extraction is of great importance for condition monitoring and intelligent diagnosis of aeroengine.Aimed at achieving intelligent diagnosis of aero-engine main shaft bearing,an enhanced sparsity-assisted ...Weak feature extraction is of great importance for condition monitoring and intelligent diagnosis of aeroengine.Aimed at achieving intelligent diagnosis of aero-engine main shaft bearing,an enhanced sparsity-assisted intelligent condition monitoring method is proposed in this paper.Through analyzing the weakness of convex sparse model,i.e.the tradeoff between noise reduction and feature reconstruction,this paper proposes an enhanced-sparsity nonconvex regularized convex model based on Moreau envelope to achieve weak feature extraction.Accordingly,a sparsity-assisted deep convolutional variational autoencoders network is proposed,which achieves the intelligent identification of fault state through training denoised normal data.Finally,the effectiveness of the proposed method is verified through aero-engine bearing run-to-failure experiment.The comparison results show that the proposed method is good at abnormal pattern recognition,showing a good potential for weak fault intelligent diagnosis of aero-engine main shaft bearings.展开更多
The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract ...The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract these impulsive components caused by faults,particularly early faults,from the measured vibration signals.To capture the high-level structure of impulsive components embedded in measured vibration signals,a dictionary learning method called shift-invariant K-means singular value decomposition(SI-K-SVD)dictionary learning is used to detect the early faults of gear-box bearings.Although SI-K-SVD is more flexible and adaptable than existing methods,the improper selection of two SI-K-SVD-related parameters,namely,the number of iterations and the pattern lengths,has an adverse influence on fault detection performance.Therefore,the sparsity of the envelope spectrum(SES)and the kurtosis of the envelope spectrum(KES)are used to select these two key parameters,respectively.SI-K-SVD with the two selected optimal parameter values,referred to as optimal parameter SI-K-SVD(OP-SI-K-SVD),is proposed to detect gear-box bearing faults.The proposed method is verified by both simulations and an experiment.Compared to the state-of-the-art methods,namely,empirical model decomposition,wavelet transform and K-SVD,OP-SI-K-SVD has better performance in diagnosing the early faults of a gear-box bearing.展开更多
Recently, low-dose computed tomography (CT) has become highly desirable because of the growing concern for the potential risks of excessive radiation. For low-dose CT imaging, it is a significant challenge to guaran...Recently, low-dose computed tomography (CT) has become highly desirable because of the growing concern for the potential risks of excessive radiation. For low-dose CT imaging, it is a significant challenge to guarantee image quality while reducing radiation dosage. Compared with classical filtered backprojection algorithms, compressed sensing-based iterative re- construction has achieved excellent imaging performance, but its clinical application is hindered due to its computational ineffi- ciency. To promote low-dose CT imaging, we propose a promising reconstruction scheme which combines total-variation mini- mization and sparse dictionary learning to enhance the reconstruction performance, and properly schedule them with an adaptive iteration stopping strategy to boost the reconstruction speed. Experiments conducted on a digital phantom and a physical phantom demonstrate a superior performance of our method over other methods in terms of image quality and computational efficiency, which validates its potential for low-dose CT imaging.展开更多
In this study, the variations in surface soil liquid water(SSLW) due to future climate change are explored in the‘Huang-Huai-Hai Plain'(‘3H') region in China with the Common Land Model(CoLM). To evaluate the...In this study, the variations in surface soil liquid water(SSLW) due to future climate change are explored in the‘Huang-Huai-Hai Plain'(‘3H') region in China with the Common Land Model(CoLM). To evaluate the possible maximum response of SSLW to climate change, the combination of the conditional nonlinear optimal perturbation related to the parameter(CNOP-P) approach and projections from 10 general circulation models(GCMs) of the Coupled Model Intercomparison Project5(CMIP5) are used. The CNOP-P-type temperature change scenario, a new type of temperature change scenario, is determined by using the CNOP-P method and constrained by the temperature change projections from the 10 GCMs under a high-emission scenario(the Representative Concentration Pathway 8.5 scenario). Numerical results have shown that the response of SSLW to the CNOP-P-type temperature scenario is stronger than those to the 11 temperature scenarios derived from the 10 GCMs and from their ensemble average in the entire ‘3H' region. In the northern region, SSLW under the CNOP-P-type scenario increases to0.1773 m^3 m^(-3); however, SSLW in the scenarios from the GCMs fluctuates from 0.1671 to 0.1748 m^3 m^(-3). In the southern region,SSLW decreases, and its variation(–0.0070 m^3 m^(-3)) due to the CNOP-P-type scenario is higher than each of the variations(–0.0051 to –0.0026 m^3 m^(-3)) due to the scenarios from the GCMs.展开更多
文摘提出一种基于偏差信息准则(deriance information criterion,DIC)的鲁棒贝叶斯混合分布模型选择算法.在变分逼近框架下,给出鲁棒贝叶斯混合模型的DIC计算公式;设计的模型选择算法能同时学习模型参数推断和进行模型选择,避免在大的候选模型集中根据模型选择准则选取最优模型.给出试验参数初始值设置方法,在含有较多离群点的仿真数据和Old Faithful Geyser数据上的试验结果表明了好的性能:得到鲁棒的混合分量参数和较准确的混合分量个数.
基金supported by the National Natural Science Foundation of China(Grant No.51674169)Department of Education of Hebei Province of China(Grant No.ZD2019140)+1 种基金Natural Science Foundation of Hebei Province of China(Grant No.F2019210243)S&T Program of Hebei(Grant No.22375413D)School of Electrical and Electronics Engineering。
文摘Accurate displacement prediction is critical for the early warning of landslides.The complexity of the coupling relationship between multiple influencing factors and displacement makes the accurate prediction of displacement difficult.Moreover,in engineering practice,insufficient monitoring data limit the performance of prediction models.To alleviate this problem,a displacement prediction method based on multisource domain transfer learning,which helps accurately predict data in the target domain through the knowledge of one or more source domains,is proposed.First,an optimized variational mode decomposition model based on the minimum sample entropy is used to decompose the cumulative displacement into the trend,periodic,and stochastic components.The trend component is predicted by an autoregressive model,and the periodic component is predicted by the long short-term memory.For the stochastic component,because it is affected by uncertainties,it is predicted by a combination of a Wasserstein generative adversarial network and multisource domain transfer learning for improved prediction accuracy.Considering a real mine slope as a case study,the proposed prediction method was validated.Therefore,this study provides new insights that can be applied to scenarios lacking sample data.
基金the National Natural Science Foundations of China(Nos.91860125,51705398)the National Key Basic Research Program of China(No.2015CB057400)the Shaanxi Province 2020 Natural Science Basic Research Plan(No.2020JQ-042).
文摘Weak feature extraction is of great importance for condition monitoring and intelligent diagnosis of aeroengine.Aimed at achieving intelligent diagnosis of aero-engine main shaft bearing,an enhanced sparsity-assisted intelligent condition monitoring method is proposed in this paper.Through analyzing the weakness of convex sparse model,i.e.the tradeoff between noise reduction and feature reconstruction,this paper proposes an enhanced-sparsity nonconvex regularized convex model based on Moreau envelope to achieve weak feature extraction.Accordingly,a sparsity-assisted deep convolutional variational autoencoders network is proposed,which achieves the intelligent identification of fault state through training denoised normal data.Finally,the effectiveness of the proposed method is verified through aero-engine bearing run-to-failure experiment.The comparison results show that the proposed method is good at abnormal pattern recognition,showing a good potential for weak fault intelligent diagnosis of aero-engine main shaft bearings.
基金Project(51875481) supported by the National Natural Science Foundation of ChinaProject(2682017CX011) supported by the Fundamental Research Foundations for the Central Universities,China+2 种基金Project(2017M623009) supported by the China Postdoctoral Science FoundationProject(2017YFB1201004) supported by the National Key Research and Development Plan for Advanced Rail Transit,ChinaProject(2019TPL_T08) supported by the Research Fund of the State Key Laboratory of Traction Power,China
文摘The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract these impulsive components caused by faults,particularly early faults,from the measured vibration signals.To capture the high-level structure of impulsive components embedded in measured vibration signals,a dictionary learning method called shift-invariant K-means singular value decomposition(SI-K-SVD)dictionary learning is used to detect the early faults of gear-box bearings.Although SI-K-SVD is more flexible and adaptable than existing methods,the improper selection of two SI-K-SVD-related parameters,namely,the number of iterations and the pattern lengths,has an adverse influence on fault detection performance.Therefore,the sparsity of the envelope spectrum(SES)and the kurtosis of the envelope spectrum(KES)are used to select these two key parameters,respectively.SI-K-SVD with the two selected optimal parameter values,referred to as optimal parameter SI-K-SVD(OP-SI-K-SVD),is proposed to detect gear-box bearing faults.The proposed method is verified by both simulations and an experiment.Compared to the state-of-the-art methods,namely,empirical model decomposition,wavelet transform and K-SVD,OP-SI-K-SVD has better performance in diagnosing the early faults of a gear-box bearing.
基金Project supported by the National High-Tech R&D Program (863) of China (No. 2015AA016704e) and the Zhejiang Provincial Natural Science Foundation, China (No. LY14F020028)
文摘Recently, low-dose computed tomography (CT) has become highly desirable because of the growing concern for the potential risks of excessive radiation. For low-dose CT imaging, it is a significant challenge to guarantee image quality while reducing radiation dosage. Compared with classical filtered backprojection algorithms, compressed sensing-based iterative re- construction has achieved excellent imaging performance, but its clinical application is hindered due to its computational ineffi- ciency. To promote low-dose CT imaging, we propose a promising reconstruction scheme which combines total-variation mini- mization and sparse dictionary learning to enhance the reconstruction performance, and properly schedule them with an adaptive iteration stopping strategy to boost the reconstruction speed. Experiments conducted on a digital phantom and a physical phantom demonstrate a superior performance of our method over other methods in terms of image quality and computational efficiency, which validates its potential for low-dose CT imaging.
基金supported by the National Natural Science Foundation of China(Grant Nos.91437111&41375111&41675104&41230420)
文摘In this study, the variations in surface soil liquid water(SSLW) due to future climate change are explored in the‘Huang-Huai-Hai Plain'(‘3H') region in China with the Common Land Model(CoLM). To evaluate the possible maximum response of SSLW to climate change, the combination of the conditional nonlinear optimal perturbation related to the parameter(CNOP-P) approach and projections from 10 general circulation models(GCMs) of the Coupled Model Intercomparison Project5(CMIP5) are used. The CNOP-P-type temperature change scenario, a new type of temperature change scenario, is determined by using the CNOP-P method and constrained by the temperature change projections from the 10 GCMs under a high-emission scenario(the Representative Concentration Pathway 8.5 scenario). Numerical results have shown that the response of SSLW to the CNOP-P-type temperature scenario is stronger than those to the 11 temperature scenarios derived from the 10 GCMs and from their ensemble average in the entire ‘3H' region. In the northern region, SSLW under the CNOP-P-type scenario increases to0.1773 m^3 m^(-3); however, SSLW in the scenarios from the GCMs fluctuates from 0.1671 to 0.1748 m^3 m^(-3). In the southern region,SSLW decreases, and its variation(–0.0070 m^3 m^(-3)) due to the CNOP-P-type scenario is higher than each of the variations(–0.0051 to –0.0026 m^3 m^(-3)) due to the scenarios from the GCMs.