To further investigate the one-dimensional(1D)rheological consolidation mechanism of double-layered soil,the fractional derivative Merchant model(FDMM)and the non-Darcian flow model with the non-Newtonian index are re...To further investigate the one-dimensional(1D)rheological consolidation mechanism of double-layered soil,the fractional derivative Merchant model(FDMM)and the non-Darcian flow model with the non-Newtonian index are respectively introduced to describe the deformation of viscoelastic soil and the flow of pore water in the process of consolidation.Accordingly,an 1D rheological consolidation equation of double-layered soil is obtained,and its numerical analysis is performed by the implicit finite difference method.In order to verify its validity,the numerical solutions by the present method for some simplified cases are compared with the results in the related literature.Then,the influence of the revelent parameters on the rheological consolidation of double-layered soil are investigated.Numerical results indicate that the parameters of non-Darcian flow and FDMM of the first soil layer greatly influence the consolidation rate of double-layered soil.As the decrease of relative compressibility or the increase of relative permeability between the lower soil and the upper soil,the dissipation rate of excess pore water pressure and the settlement rate of the ground will be accelerated.Increasing the relative thickness of soil layer with high permeability or low compressibility will also accelerate the consolidation rate of double-layered soil.展开更多
The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional reduced differential transform method (FRDTM) for computation of approximate solution of time-fra...The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional reduced differential transform method (FRDTM) for computation of approximate solution of time-fractional gas dynamics equation (TFGDE) arising in shock fronts. In this approach, the fractional derivative is described in the Caputo sense. Four numeric experiments have been carried out to confirm the validity and the efficiency of the method. It is found that the exact or a closed approximate analytical solution of a fractional nonlinear differential equations arising in allied science and engineering can be obtained easily. Moreover, due to its small size of calculation contrary to the other analytical approaches while dealing with a complex and tedious physical problems arising in various branches of natural sciences and engineering, it is very easy to implement.展开更多
In [1], Shen Guangyu constructed several classes of new simple Lie algebras of characteristic 2, which are called the variations of G2. In this paper, the authors investigate their derivation algebras. It is shown tha...In [1], Shen Guangyu constructed several classes of new simple Lie algebras of characteristic 2, which are called the variations of G2. In this paper, the authors investigate their derivation algebras. It is shown that G2 and its variations all possess unique nondegenerate associative forms. The authors also find some nonsingular derivations of ViG for i = 3,4, 5, 6, and thereby construct some left-symmetric structures on Vi G for i = 3,4,5,6. Some errors about the variations of sl(3, F) in [1] are corrected.展开更多
As an extension to the derivative-dependent functional variable separation approach, the approximate derivative-dependent functional variable separation approach is proposed, and it is applied to study the generalized...As an extension to the derivative-dependent functional variable separation approach, the approximate derivative-dependent functional variable separation approach is proposed, and it is applied to study the generalized diffusion equations with perturbation. Complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is obtained. As a result, the corresponding approximate derivative-dependent functional separable solutions to some resulting perturbed equations are derived by way of examples.展开更多
基金Project(51578511)supported by the National Natural Science Foundation of China。
文摘To further investigate the one-dimensional(1D)rheological consolidation mechanism of double-layered soil,the fractional derivative Merchant model(FDMM)and the non-Darcian flow model with the non-Newtonian index are respectively introduced to describe the deformation of viscoelastic soil and the flow of pore water in the process of consolidation.Accordingly,an 1D rheological consolidation equation of double-layered soil is obtained,and its numerical analysis is performed by the implicit finite difference method.In order to verify its validity,the numerical solutions by the present method for some simplified cases are compared with the results in the related literature.Then,the influence of the revelent parameters on the rheological consolidation of double-layered soil are investigated.Numerical results indicate that the parameters of non-Darcian flow and FDMM of the first soil layer greatly influence the consolidation rate of double-layered soil.As the decrease of relative compressibility or the increase of relative permeability between the lower soil and the upper soil,the dissipation rate of excess pore water pressure and the settlement rate of the ground will be accelerated.Increasing the relative thickness of soil layer with high permeability or low compressibility will also accelerate the consolidation rate of double-layered soil.
文摘The present article is concerned with the implementation of a recent semi-analytical method referred to as fractional reduced differential transform method (FRDTM) for computation of approximate solution of time-fractional gas dynamics equation (TFGDE) arising in shock fronts. In this approach, the fractional derivative is described in the Caputo sense. Four numeric experiments have been carried out to confirm the validity and the efficiency of the method. It is found that the exact or a closed approximate analytical solution of a fractional nonlinear differential equations arising in allied science and engineering can be obtained easily. Moreover, due to its small size of calculation contrary to the other analytical approaches while dealing with a complex and tedious physical problems arising in various branches of natural sciences and engineering, it is very easy to implement.
基金Project supported by the National Natural Science Foundation of China(No.10271047),the Doctoral Programme Foundation of the Ministry of Education of China and the Shanghai Priority Academic Discipline.
文摘In [1], Shen Guangyu constructed several classes of new simple Lie algebras of characteristic 2, which are called the variations of G2. In this paper, the authors investigate their derivation algebras. It is shown that G2 and its variations all possess unique nondegenerate associative forms. The authors also find some nonsingular derivations of ViG for i = 3,4, 5, 6, and thereby construct some left-symmetric structures on Vi G for i = 3,4,5,6. Some errors about the variations of sl(3, F) in [1] are corrected.
基金Supported by the National Natural Science Foundation of China under Grant No.10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.SJ08A05
文摘As an extension to the derivative-dependent functional variable separation approach, the approximate derivative-dependent functional variable separation approach is proposed, and it is applied to study the generalized diffusion equations with perturbation. Complete classification of these perturbed equations which admit approximate derivative-dependent functional separable solutions is obtained. As a result, the corresponding approximate derivative-dependent functional separable solutions to some resulting perturbed equations are derived by way of examples.