期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于VF-DW-DFN的锂离子电池剩余寿命预测 被引量:3
1
作者 易顺民 谢林柏 彭力 《储能科学与技术》 CAS CSCD 北大核心 2022年第7期2305-2315,共11页
锂离子电池作为各类储能系统与设备的重要组成部分,准确预测锂离子电池的剩余使用寿命对于保障电池相关产业和设施的可靠性与安全性起着关键作用。针对锂离子电池剩余寿命预测中存在的非平稳、非线性特性导致单一数据驱动方法的预测精... 锂离子电池作为各类储能系统与设备的重要组成部分,准确预测锂离子电池的剩余使用寿命对于保障电池相关产业和设施的可靠性与安全性起着关键作用。针对锂离子电池剩余寿命预测中存在的非平稳、非线性特性导致单一数据驱动方法的预测精度低、泛化性能差等问题,提出了一种基于变分滤波、数据规整和深度融合网络的数据驱动融合(VF-DW-DFN)方法。首先,利用变分滤波法去除原始电池退化序列中的随机噪声干扰,得到相对平稳的退化特征数据。然后,采用最优嵌入法构造预测滑窗,实现特征数据规整,减少信息损失。其次,设计了一种新型深度融合网络对电池非线性退化数据进行建模,辨识电池数据中的退化模式,实现最终的锂离子电池剩余寿命预测。最后,在钴酸锂锂离子电池数据集上进行了剩余寿命预测实验,实验预测的平均均方根误差为1.41%,平均剩余寿命绝对误差小于2个循环周期。实验结果表明所提出的方法泛化性能好,预测精度高,误差小,能够对锂离子电池的退化过程进行有效建模和准确预测。 展开更多
关键词 剩余寿命预测 锂离子电池 滤波(vf) 数据规整(DW) 深度融合网络(DFN)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部