期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
动态卷积生成对抗网络的视频帧预测方法研究 被引量:2
1
作者 安利智 何平 +2 位作者 张薇 石钰阳 田宇 《小型微型计算机系统》 CSCD 北大核心 2022年第2期278-284,共7页
针对当前视频帧预测模型中存在的预测准确度较差和物体结构信息丢失等问题,提出了一种动态卷积生成对抗网络.在生成网络中,首先使用卷积长短时记忆网络初步提取输入视频流的图像特征,然后利用卷积神经动态平流单元对视频流中的运动特征... 针对当前视频帧预测模型中存在的预测准确度较差和物体结构信息丢失等问题,提出了一种动态卷积生成对抗网络.在生成网络中,首先使用卷积长短时记忆网络初步提取输入视频流的图像特征,然后利用卷积神经动态平流单元对视频流中的运动特征进行提取,最后将上述两种特征组合后输出一组预测视频帧;在判别网络中,采用一个3D卷积网络一次性接收全部视频帧.在实验中,使用Adam方法优化模型的参数,采用KTH和BAIR Robot Pushing数据集作为训练数据集.实验结果表明:无论是在长时间视频帧预测准确度和物体结构信息保留方面,还是人眼的主观感受上,动态卷积生成对抗网络均优于变分生成对抗网络,其在结构相似性度量指标下提高了14.5%,在学习感知图像块相似性指标下提高了7.69%,并且生成的预测视频更加流畅,具有更高的实用价值. 展开更多
关键词 视频帧预测 卷积动态神经平流单元 生成对抗网络 变分生成对抗网络
下载PDF
基于VAE-GAN数据增强算法的小样本滚动轴承故障分类方法 被引量:2
2
作者 张钊光 蒋庆磊 +3 位作者 詹瑜滨 侯修群 郑英 崔运佳 《原子能科学技术》 EI CAS CSCD 北大核心 2023年第S01期228-237,共10页
近些年,数据增强算法被广泛应用于小样本故障分类中。然而,传统的数据增强模型在训练中经常出现梯度爆炸、梯度消失等问题,这在一定程度上限制了其在滚动轴承故障分类上的应用。为了解决上述问题,提出了一种新的模型框架。该模型首先将... 近些年,数据增强算法被广泛应用于小样本故障分类中。然而,传统的数据增强模型在训练中经常出现梯度爆炸、梯度消失等问题,这在一定程度上限制了其在滚动轴承故障分类上的应用。为了解决上述问题,提出了一种新的模型框架。该模型首先将滚动轴承的原始一维振动数据通过连续小波变换(CWT)转换为二维图像,然后利用变分自动编码生成式对抗网络(VAE-GAN)对图像数据做样本增强,最后利用生成图片和原图片共同训练一个卷积神经网络(CNN)故障分类器。使用凯斯西储大学实验室的公开数据集对所提出的方法进行了验证。实验结果表明,与其他模型相比,所提出的模型具有更优越的性能。 展开更多
关键词 小样本 滚动轴承 故障诊断 连续小波 自动编码生成对抗网络 卷积神经网络
下载PDF
基于无监督多源数据特征解析的网络威胁态势评估 被引量:14
3
作者 杨宏宇 王峰岩 《通信学报》 EI CSCD 北大核心 2020年第2期143-154,共12页
针对监督式神经网络测试网络威胁时需根据数据类别标记进行建模的局限性,提出了一种基于无监督多源数据特征解析的网络威胁态势评估方法。首先,设计了一个面向安全威胁评估的变分自动编码器-生成式对抗网络(V-G),将只包含正常网络流量... 针对监督式神经网络测试网络威胁时需根据数据类别标记进行建模的局限性,提出了一种基于无监督多源数据特征解析的网络威胁态势评估方法。首先,设计了一个面向安全威胁评估的变分自动编码器-生成式对抗网络(V-G),将只包含正常网络流量的训练数据集输入V-G的网络集合层进行模型训练,并计算各层网络输出的重构误差。然后,通过输出层的三层变分自动编码器重构误差学习并获取训练异常阈值,使用包含异常网络流量的测试数据集测试分组威胁并统计每组测试的威胁发生概率。最后,根据威胁发生概率确定网络安全威胁严重度,结合威胁影响度计算威胁态势值以获取网络威胁态势。仿真实验结果表明,所提方法对网络威胁具有较强的表征能力,能够有效直观地评估网络威胁的整体态势。 展开更多
关键词 无监督 多源数据特征解析 自动编码器-生成对抗网络 威胁发生概率 威胁态势评估
下载PDF
Slope displacement prediction based on multisource domain transfer learning for insufficient sample data
4
作者 Zheng Hai-Qing Hu Lin-Ni +2 位作者 Sun Xiao-Yun Zhang Yu Jin Shen-Yi 《Applied Geophysics》 SCIE CSCD 2024年第3期496-504,618,共10页
Accurate displacement prediction is critical for the early warning of landslides.The complexity of the coupling relationship between multiple influencing factors and displacement makes the accurate prediction of displ... Accurate displacement prediction is critical for the early warning of landslides.The complexity of the coupling relationship between multiple influencing factors and displacement makes the accurate prediction of displacement difficult.Moreover,in engineering practice,insufficient monitoring data limit the performance of prediction models.To alleviate this problem,a displacement prediction method based on multisource domain transfer learning,which helps accurately predict data in the target domain through the knowledge of one or more source domains,is proposed.First,an optimized variational mode decomposition model based on the minimum sample entropy is used to decompose the cumulative displacement into the trend,periodic,and stochastic components.The trend component is predicted by an autoregressive model,and the periodic component is predicted by the long short-term memory.For the stochastic component,because it is affected by uncertainties,it is predicted by a combination of a Wasserstein generative adversarial network and multisource domain transfer learning for improved prediction accuracy.Considering a real mine slope as a case study,the proposed prediction method was validated.Therefore,this study provides new insights that can be applied to scenarios lacking sample data. 展开更多
关键词 slope displacement multisource domain transfer learning(MDTL) variational mode decomposition(VMD) generative adversarial network(GAN) Wasserstein-GAN
下载PDF
基于无监督生成推理的网络安全威胁态势评估方法 被引量:22
5
作者 杨宏宇 王峰岩 吕伟力 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第6期474-484,共11页
针对基于数据类别标记的监督式网络数据建模方式在评估网络威胁态势时存在计算成本高,效率低和耗时长的问题,该文提出一种基于无监督生成推理的网络安全威胁态势评估方法。首先,设计一种变分自动编码器-生成式对抗网络(VAE-GAN)模型,将... 针对基于数据类别标记的监督式网络数据建模方式在评估网络威胁态势时存在计算成本高,效率低和耗时长的问题,该文提出一种基于无监督生成推理的网络安全威胁态势评估方法。首先,设计一种变分自动编码器-生成式对抗网络(VAE-GAN)模型,将只包含正常网络流量的训练数据集输入到由VAE-GAN组成的网络集合层进行训练,统计每层网络输出的重构误差,并使用输出层的3层变分自动编码器训练重构误差;然后使用包含异常网络流量的测试数据集进行分组威胁测试,统计每组测试的威胁发生概率;最后根据威胁发生概率确定网络安全威胁严重度,结合威胁影响度计算威胁态势值对网络安全威胁态势进行评估。仿真实验结果表明,与反向传播(BP)和径向基函数(RBF)方法相比,该方法能够更直观地评估网络威胁的整体态势,对网络威胁具有更好的表征效果。 展开更多
关键词 无监督生成推理 自动编码器-生成对抗网络(VAE-GAN) 威胁发生概率 威胁态势评估
原文传递
基于SVAE-WGANGP的地点车速数据质量恢复研究
6
作者 李冬怡 王建军 +1 位作者 李鹏 王赛 《中国公路学报》 EI CAS CSCD 北大核心 2023年第10期328-344,共17页
为了解决因设备长期失修造成的数据大量缺失和传统数据修复方法无法表示上下文时空关系以及不规则时序特征的问题,提出一种时空生成对抗变分自编码网络(Spatiotemporal Variational Autoencoder with W-Generative Adversarial Network-... 为了解决因设备长期失修造成的数据大量缺失和传统数据修复方法无法表示上下文时空关系以及不规则时序特征的问题,提出一种时空生成对抗变分自编码网络(Spatiotemporal Variational Autoencoder with W-Generative Adversarial Network-GP, SVAE-WGANGP),用以恢复地点车速数据质量。该方法以生成对抗变分自编码网络为模型基本框架,直接学习自然缺失数据集的概率分布;基于改进时空信息单元的变分自编码生成网络提取数据在缺失模式下的隐式不规则时序特征与显式上下文时空相互依赖信息;利用对抗训练策略(Wasserstein GAN with Gradient Penalty, WGAN-GP)优化深度全连接判别网络,以获得最优重构数据。借助乌鲁木齐市某路网46天实际卡口地点车速实例验证模型合理性,结果表明:与其他6个基准模型的评估指标均值相比,PMCR机制下,所提方法的均方根误差(RMSE)和平均绝对误差(MAE)降低幅度分别在0.794~0.332和0.899~0.321,决定系数R^(2)升高幅度在3.175%~60.918%;LMR机制下,所提方法的RMSE和MAE平均降低幅度分别在0.600~0.222和0.773~0.208,R^(2)平均升高幅度在4.681%~91.518%;BMR机制下,所提方法的RMSE和MAE平均降低幅度分别在0.212~0.625和0.269~0.715,R^(2)平均升高幅度在5.309%~49.671%。SVAE-WGANGP在恢复不同缺失机制下的路网地点车速数据质量时具备较优精确性和良好普适性,交通时空信息和不规则时序特征对该模型的数据质量恢复性能具有一定贡献性。此外,在BMR机制下,SVAE-WGANGP的运算耗时均值较VAE-GAN的均值降低0.421 s,与其他5个基准模型相比,增长幅度在0.155~12.518 s。从整体来看,该方法在恢复数据时具有较高的时效性。 展开更多
关键词 交通工程 地点车速数据质量恢复 生成对抗自编码器网络 城市卡口数据 时空信息 不规则时序特征
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部