Accurate displacement prediction is critical for the early warning of landslides.The complexity of the coupling relationship between multiple influencing factors and displacement makes the accurate prediction of displ...Accurate displacement prediction is critical for the early warning of landslides.The complexity of the coupling relationship between multiple influencing factors and displacement makes the accurate prediction of displacement difficult.Moreover,in engineering practice,insufficient monitoring data limit the performance of prediction models.To alleviate this problem,a displacement prediction method based on multisource domain transfer learning,which helps accurately predict data in the target domain through the knowledge of one or more source domains,is proposed.First,an optimized variational mode decomposition model based on the minimum sample entropy is used to decompose the cumulative displacement into the trend,periodic,and stochastic components.The trend component is predicted by an autoregressive model,and the periodic component is predicted by the long short-term memory.For the stochastic component,because it is affected by uncertainties,it is predicted by a combination of a Wasserstein generative adversarial network and multisource domain transfer learning for improved prediction accuracy.Considering a real mine slope as a case study,the proposed prediction method was validated.Therefore,this study provides new insights that can be applied to scenarios lacking sample data.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51674169)Department of Education of Hebei Province of China(Grant No.ZD2019140)+1 种基金Natural Science Foundation of Hebei Province of China(Grant No.F2019210243)S&T Program of Hebei(Grant No.22375413D)School of Electrical and Electronics Engineering。
文摘Accurate displacement prediction is critical for the early warning of landslides.The complexity of the coupling relationship between multiple influencing factors and displacement makes the accurate prediction of displacement difficult.Moreover,in engineering practice,insufficient monitoring data limit the performance of prediction models.To alleviate this problem,a displacement prediction method based on multisource domain transfer learning,which helps accurately predict data in the target domain through the knowledge of one or more source domains,is proposed.First,an optimized variational mode decomposition model based on the minimum sample entropy is used to decompose the cumulative displacement into the trend,periodic,and stochastic components.The trend component is predicted by an autoregressive model,and the periodic component is predicted by the long short-term memory.For the stochastic component,because it is affected by uncertainties,it is predicted by a combination of a Wasserstein generative adversarial network and multisource domain transfer learning for improved prediction accuracy.Considering a real mine slope as a case study,the proposed prediction method was validated.Therefore,this study provides new insights that can be applied to scenarios lacking sample data.
文摘为了解决因设备长期失修造成的数据大量缺失和传统数据修复方法无法表示上下文时空关系以及不规则时序特征的问题,提出一种时空生成对抗变分自编码网络(Spatiotemporal Variational Autoencoder with W-Generative Adversarial Network-GP, SVAE-WGANGP),用以恢复地点车速数据质量。该方法以生成对抗变分自编码网络为模型基本框架,直接学习自然缺失数据集的概率分布;基于改进时空信息单元的变分自编码生成网络提取数据在缺失模式下的隐式不规则时序特征与显式上下文时空相互依赖信息;利用对抗训练策略(Wasserstein GAN with Gradient Penalty, WGAN-GP)优化深度全连接判别网络,以获得最优重构数据。借助乌鲁木齐市某路网46天实际卡口地点车速实例验证模型合理性,结果表明:与其他6个基准模型的评估指标均值相比,PMCR机制下,所提方法的均方根误差(RMSE)和平均绝对误差(MAE)降低幅度分别在0.794~0.332和0.899~0.321,决定系数R^(2)升高幅度在3.175%~60.918%;LMR机制下,所提方法的RMSE和MAE平均降低幅度分别在0.600~0.222和0.773~0.208,R^(2)平均升高幅度在4.681%~91.518%;BMR机制下,所提方法的RMSE和MAE平均降低幅度分别在0.212~0.625和0.269~0.715,R^(2)平均升高幅度在5.309%~49.671%。SVAE-WGANGP在恢复不同缺失机制下的路网地点车速数据质量时具备较优精确性和良好普适性,交通时空信息和不规则时序特征对该模型的数据质量恢复性能具有一定贡献性。此外,在BMR机制下,SVAE-WGANGP的运算耗时均值较VAE-GAN的均值降低0.421 s,与其他5个基准模型相比,增长幅度在0.155~12.518 s。从整体来看,该方法在恢复数据时具有较高的时效性。