The interplay between chemistry and interfacial-tension-driven hydrodynamic instabilities has been studied experimentally. The system on hand consists of two immiscible liquids separated along an initially plane inter...The interplay between chemistry and interfacial-tension-driven hydrodynamic instabilities has been studied experimentally. The system on hand consists of two immiscible liquids separated along an initially plane interface at which an interfacial reaction takes place to produce in situ a surfactant. It is identified that the dynamics of the system depends on the orientation of the Hele-Shaw cell with respect to the vector of gravity. If the nele-Shaw cell is placed vertically, Marangoni cells with vigorous convection develop in both phases along a nearly planar interface. However, if the Hele-Shaw cell is tilted off the gravity, the instabilities in the system are characterized by the large scale interracial deformation with a spatio-temporal periodicity together with the chemo-Marangoni convection. The focus is on the exploration of the transition from the cellular mode to the large scale interfacial deformation.展开更多
Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic...Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has been briefly described, several of which are novel.展开更多
基金Deutsche Forschung Gemainschaft(Ec/201/1-5)Deutsches Zentrum fuer Luft und Raumfahrt(50WM0058).
文摘The interplay between chemistry and interfacial-tension-driven hydrodynamic instabilities has been studied experimentally. The system on hand consists of two immiscible liquids separated along an initially plane interface at which an interfacial reaction takes place to produce in situ a surfactant. It is identified that the dynamics of the system depends on the orientation of the Hele-Shaw cell with respect to the vector of gravity. If the nele-Shaw cell is placed vertically, Marangoni cells with vigorous convection develop in both phases along a nearly planar interface. However, if the Hele-Shaw cell is tilted off the gravity, the instabilities in the system are characterized by the large scale interracial deformation with a spatio-temporal periodicity together with the chemo-Marangoni convection. The focus is on the exploration of the transition from the cellular mode to the large scale interfacial deformation.
基金supported by the National Natural Science Foundation of China(Grant Nos.11275031,11675026,11475032,11475034,11575033,and 11274026)the Foundation of President of Chinese Academy of Engineering Physics(Grant No.2014-1-040)the National Basic Research Program of China(Grant No.2013CB834100)
文摘Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has been briefly described, several of which are novel.