Information on lead redistribution and speciation changes in anthrosphere can help to analyze the whole lead cycle on the earth. Lead life cycle was traced based on the concepts of anthropogenic transfer and transform...Information on lead redistribution and speciation changes in anthrosphere can help to analyze the whole lead cycle on the earth. Lead life cycle was traced based on the concepts of anthropogenic transfer and transformation. Lead transfer and the distribution of chemical species throughout the anthropogenic flow were identified in 2010 in China. The results show that 1.85 Mt lead ore was consumed(besides 1.287 Mt imported concentrated ore and 1.39 Mt lead scraps. After undergoing transformations, 3.53 Mt lead entered end services in chemical species of Pb, Pb O2 and PbSO4, altogether accounting for over 80% of the total lead products. Finally, 2.10 Mt ore was emitted into the environment in such species as PbSO4(26%), PbO(19%) and Pb(15%). Lead transfer begins in primary raw material sectors, and then transfers to manufacturing sectors. Lead provides services mainly in such industrial sectors as transportation, electrical power and buildings or construction.展开更多
α decay half-lives are calculated using the Qα values obtained by Semi-empirical Shell Model in the framework of the Unified Fission Model (UFM) with the Coulomb repulsion, nuclear attraction due to proximity pote...α decay half-lives are calculated using the Qα values obtained by Semi-empirical Shell Model in the framework of the Unified Fission Model (UFM) with the Coulomb repulsion, nuclear attraction due to proximity potential, and rotational energy due to angular momentum transfer of a particle. In addition, the calculated and experimental half-lives of 425 nuclei are compared to check the validity of the model applied on α decay. The calculated half-lives of decay are in good agreement with the experimental data. Finally, some useful predications on the α decay half-lives are provided for future experiments.展开更多
Nitride fuels have several advantages including high thermal conductivity and high metal density(like metallic fuels) and high melting point and isotropic crystal structure(like oxide fuels). Since the late 1990 s, th...Nitride fuels have several advantages including high thermal conductivity and high metal density(like metallic fuels) and high melting point and isotropic crystal structure(like oxide fuels). Since the late 1990 s, the partitioning and transmutation of minor actinides(MA) has been studied to decrease the long-term radio-toxicity of high-level waste and to mitigate the burden of final disposal. Japan Atomic Energy Agency(JAEA) has proposed a dedicated transmutation cycle using an accelerator-driven system(ADS) with nitride fuels containing MA. The nitride fuel cycle we have developed includes a pyrochemical process. Our focus is on the electrolysis of nitride fuels and their refabrication from the recovered actinides; other processes are similar to the technology for metal fuel treatment and have been studied elsewhere. Here, we summarize our activity on the development of the pyrochemical treatment of spent nitride fuels.展开更多
In the framework of the NRQCD factorization formalism,we calculate the decay rate for the process Υ(1 S) → ccgg to the next-to-leading order(NLO) in the relative velocity v of the b quark in the bottomonium rest fra...In the framework of the NRQCD factorization formalism,we calculate the decay rate for the process Υ(1 S) → ccgg to the next-to-leading order(NLO) in the relative velocity v of the b quark in the bottomonium rest frame.We also study the momentum distributions of the charm quark and the charmed-hadron in the decay.The momentum distribution of the charmed-hadron is obtained by convolving the charm quark momentum distribution with a fragmentation function of the charm quark into the hadron.In addition,we fit the nonperturbative NRQCD matrix element v 2 Υ through comparing the theoretical prediction with the measurement from the BaBar collaboration for the decay rate of Υ(1 S) → D + X.In return,taking this matrix element as an input parameter,we predict the decay rates as well as the momentum distributions for a collection of charmed-hadrons in the process Υ(1S) → ccgg → hX.展开更多
基金Project(41171361)supported by the National Natural Science Foundation of China
文摘Information on lead redistribution and speciation changes in anthrosphere can help to analyze the whole lead cycle on the earth. Lead life cycle was traced based on the concepts of anthropogenic transfer and transformation. Lead transfer and the distribution of chemical species throughout the anthropogenic flow were identified in 2010 in China. The results show that 1.85 Mt lead ore was consumed(besides 1.287 Mt imported concentrated ore and 1.39 Mt lead scraps. After undergoing transformations, 3.53 Mt lead entered end services in chemical species of Pb, Pb O2 and PbSO4, altogether accounting for over 80% of the total lead products. Finally, 2.10 Mt ore was emitted into the environment in such species as PbSO4(26%), PbO(19%) and Pb(15%). Lead transfer begins in primary raw material sectors, and then transfers to manufacturing sectors. Lead provides services mainly in such industrial sectors as transportation, electrical power and buildings or construction.
基金Supported by the Natural Science Foundation of China under Grant Nos.10775061,10875152,10875151,and 10975064the Fundamental Research Fund for Physics and Mathematic of Lanzhou University(LZULL200805)+2 种基金the Fundamental Research Funds for the Central Universities(lzujbky-2009-21)the Knowledge Innovation Project of the Chinese Academy of Sciences under Grant Nos.KJCX2-SW-N17,KJCX3-SW-N02Major State Basic Research Development Program under Grant No.2007CB815000
文摘α decay half-lives are calculated using the Qα values obtained by Semi-empirical Shell Model in the framework of the Unified Fission Model (UFM) with the Coulomb repulsion, nuclear attraction due to proximity potential, and rotational energy due to angular momentum transfer of a particle. In addition, the calculated and experimental half-lives of 425 nuclei are compared to check the validity of the model applied on α decay. The calculated half-lives of decay are in good agreement with the experimental data. Finally, some useful predications on the α decay half-lives are provided for future experiments.
文摘Nitride fuels have several advantages including high thermal conductivity and high metal density(like metallic fuels) and high melting point and isotropic crystal structure(like oxide fuels). Since the late 1990 s, the partitioning and transmutation of minor actinides(MA) has been studied to decrease the long-term radio-toxicity of high-level waste and to mitigate the burden of final disposal. Japan Atomic Energy Agency(JAEA) has proposed a dedicated transmutation cycle using an accelerator-driven system(ADS) with nitride fuels containing MA. The nitride fuel cycle we have developed includes a pyrochemical process. Our focus is on the electrolysis of nitride fuels and their refabrication from the recovered actinides; other processes are similar to the technology for metal fuel treatment and have been studied elsewhere. Here, we summarize our activity on the development of the pyrochemical treatment of spent nitride fuels.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10875130,10935012,and 10875156
文摘In the framework of the NRQCD factorization formalism,we calculate the decay rate for the process Υ(1 S) → ccgg to the next-to-leading order(NLO) in the relative velocity v of the b quark in the bottomonium rest frame.We also study the momentum distributions of the charm quark and the charmed-hadron in the decay.The momentum distribution of the charmed-hadron is obtained by convolving the charm quark momentum distribution with a fragmentation function of the charm quark into the hadron.In addition,we fit the nonperturbative NRQCD matrix element v 2 Υ through comparing the theoretical prediction with the measurement from the BaBar collaboration for the decay rate of Υ(1 S) → D + X.In return,taking this matrix element as an input parameter,we predict the decay rates as well as the momentum distributions for a collection of charmed-hadrons in the process Υ(1S) → ccgg → hX.