Species assemblages and natural communities are increasingly impacted by changes in the frequency and severity of extreme climatic events. Here we propose a brief overview of expected and demonstrated direct and indir...Species assemblages and natural communities are increasingly impacted by changes in the frequency and severity of extreme climatic events. Here we propose a brief overview of expected and demonstrated direct and indirect impacts of extreme events on animal communities. We show that differential impacts on basic biological parameters of individual species can lead to strong changes in community composition and structure with the potential to considerably modify the functional traits of the community. Sudden disequilibria have even been shown to induce irreversible shifts in marine ecosystems, while cascade effects on various taxonomic groups have been highlighted in Mediterranean forests. Indirect effects of extreme climatic events are expected when event-induced habitat changes (e.g. soil stability, vegetation composition, water flows altered by droughts, floods or hurricanes) have differential consequences on species assembled within the communities. Moreover, in increasing the amplitude of trophic mismatches, extreme events are likely to turn many systems into ecological traps under climate change. Finally, we propose a focus on the potential impacts of an extreme heat wave on local assemblages as an empirical case study, analysing monitoring data on breeding birds collected in France. In this example, we show that despite specific populations were differently affected by local temperature anomalies, communities seem to be unaffected by a sudden heat wave. These results suggest that communities are tracking climate change at the highest possible rate [Current Zoology 57 (3): 406-413, 2011].展开更多
Microbial activities are affected by a myriad of factors with end points involved in nutrient cycling and carbon sequestration issues.Because of their prominent role in the global carbon balance and their possible rol...Microbial activities are affected by a myriad of factors with end points involved in nutrient cycling and carbon sequestration issues.Because of their prominent role in the global carbon balance and their possible role in carbon sequestration, soil microbes are very important organisms in relation to global climate changes. This review focuses mainly on the responses of soil microbes to climate changes and subsequent effects on soil carbon dynamics. An overview table regarding extracellular enzyme activities(EAA) with all relevant literature data summarizes the effects of different ecosystems under various experimental treatments on EAA. Increasing temperature, altered soil moisture regimes, and elevated carbon dioxide significantly affect directly or indirectly soil microbial activities.High temperature regimes can increase the microbial activities which can provide positive feedback to climate change, whereas lower moisture condition in pedosystem can negate the increase, although the interactive effects still remain unanswered. Shifts in soil microbial community in response to climate change have been determined by gene probing, phospholipid fatty acid analysis(PLFA),terminal restriction length polymorphism(TRFLP), and denaturing gradient gel electrophoresis(DGGE), but in a recent investigations,omic technological interventions have enabled determination of the shift in soil microbe community at a taxa level, which can provide very important inputs for modeling C sequestration process. The intricacy and diversity of the soil microbial population and how it responds to climate change are big challenges, but new molecular and stable isotope probing tools are being developed for linking fluctuations in microbial diversity to ecosystem function.展开更多
文摘Species assemblages and natural communities are increasingly impacted by changes in the frequency and severity of extreme climatic events. Here we propose a brief overview of expected and demonstrated direct and indirect impacts of extreme events on animal communities. We show that differential impacts on basic biological parameters of individual species can lead to strong changes in community composition and structure with the potential to considerably modify the functional traits of the community. Sudden disequilibria have even been shown to induce irreversible shifts in marine ecosystems, while cascade effects on various taxonomic groups have been highlighted in Mediterranean forests. Indirect effects of extreme climatic events are expected when event-induced habitat changes (e.g. soil stability, vegetation composition, water flows altered by droughts, floods or hurricanes) have differential consequences on species assembled within the communities. Moreover, in increasing the amplitude of trophic mismatches, extreme events are likely to turn many systems into ecological traps under climate change. Finally, we propose a focus on the potential impacts of an extreme heat wave on local assemblages as an empirical case study, analysing monitoring data on breeding birds collected in France. In this example, we show that despite specific populations were differently affected by local temperature anomalies, communities seem to be unaffected by a sudden heat wave. These results suggest that communities are tracking climate change at the highest possible rate [Current Zoology 57 (3): 406-413, 2011].
文摘Microbial activities are affected by a myriad of factors with end points involved in nutrient cycling and carbon sequestration issues.Because of their prominent role in the global carbon balance and their possible role in carbon sequestration, soil microbes are very important organisms in relation to global climate changes. This review focuses mainly on the responses of soil microbes to climate changes and subsequent effects on soil carbon dynamics. An overview table regarding extracellular enzyme activities(EAA) with all relevant literature data summarizes the effects of different ecosystems under various experimental treatments on EAA. Increasing temperature, altered soil moisture regimes, and elevated carbon dioxide significantly affect directly or indirectly soil microbial activities.High temperature regimes can increase the microbial activities which can provide positive feedback to climate change, whereas lower moisture condition in pedosystem can negate the increase, although the interactive effects still remain unanswered. Shifts in soil microbial community in response to climate change have been determined by gene probing, phospholipid fatty acid analysis(PLFA),terminal restriction length polymorphism(TRFLP), and denaturing gradient gel electrophoresis(DGGE), but in a recent investigations,omic technological interventions have enabled determination of the shift in soil microbe community at a taxa level, which can provide very important inputs for modeling C sequestration process. The intricacy and diversity of the soil microbial population and how it responds to climate change are big challenges, but new molecular and stable isotope probing tools are being developed for linking fluctuations in microbial diversity to ecosystem function.