期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
数字技术融合、动态技术群落对产业高质量创新的影响
1
作者 李莉 王高森 司梦娜 《技术与创新管理》 2024年第4期355-362,共8页
数字经济时代,数据资源的开放与共享特征,使得创新主体能够及时快速地获取创新知识,从而推动创新合作从顺序线性模式转变为多层网状模式,“群式”创新范式蓬勃兴起。深度数实融合背景下,如何依托技术群落的动态配置实现产业高质量创新... 数字经济时代,数据资源的开放与共享特征,使得创新主体能够及时快速地获取创新知识,从而推动创新合作从顺序线性模式转变为多层网状模式,“群式”创新范式蓬勃兴起。深度数实融合背景下,如何依托技术群落的动态配置实现产业高质量创新是亟待解决的重要议题。研究基于HimmPat全球专利智能检索分析平台,获取新能源产业2000—2022年间的1416820条专利数据,构建166个专利引用网络,执行层级回归分析,检验数字技术融合、动态群落对产业创新绩效的影响。结果表明:数字技术融合正向影响产业创新绩效;群内成员变动和成员跨群流动均正向调节数字技术融合对产业创新绩效的正向作用。研究发现,治理产业创新网络中技术群落的动态行为有助于提升数字化情境下的产业创新绩效。 展开更多
关键词 创新绩效 数字技术融合 技术群落 成员动态行为 群落成员变动 跨群流动
下载PDF
“metapopulation”的概念和中文译法建议 被引量:2
2
作者 王中仁 《科技术语研究》 2002年第1期22-23,共2页
关键词 “metapopulation” 概念 中文译法 变动群落
下载PDF
增江鱼类群落特征及其历史变化 被引量:7
3
作者 贾银涛 陈毅峰 +1 位作者 陶捐 何德奎 《资源科学》 CSSCI CSCD 北大核心 2013年第7期1490-1498,共9页
基于2009年11-12月和2010年3-4月对增江流域13个样点进行的鱼类资源调查,并结合20世纪80年代的历史资料,分析了增江鱼类群落特征现状及历史变化。结果表明:本次调查共采集鱼类72种,隶属于7目18科60属。与20世纪80年代调查结果相比,物种... 基于2009年11-12月和2010年3-4月对增江流域13个样点进行的鱼类资源调查,并结合20世纪80年代的历史资料,分析了增江鱼类群落特征现状及历史变化。结果表明:本次调查共采集鱼类72种,隶属于7目18科60属。与20世纪80年代调查结果相比,物种数相差较小,但两次调查均采集到的鱼类只有43种,种类相似性指数仅为0.44。调查发现新记录种29种,其中多为小型鱼类。但历史记载的26种鱼类在此次调查中未发现。增江鱼类生态类型目前以习缓流或静水、中层栖息、杂食性、定居性鱼类为主。较历史相比,洄游性鱼类种类所占比例变化最大,从19.12%降至11.11%。亲流型种类物种组成相似性变化最大,物种相似性指数仅为0.25。目前增江支流渔获对象在多度和数量上均占优势的为宽鳍鱲(Zacco platypus)、南方波鱼(Rasbora cephalotaenia steineri)、马口鱼(Opsariichthys bidens),其中宽鳍鱲为绝对优势种。干流地区为尼罗非鲫(Oreochromis niloticus)、鲮(Cirrhinusmolitorella)、三角鲂(Magalobrame Tarminalis)等,其中,尼罗非鲫是绝对优势种。曾在80年代占据增江渔业主体的黄尾鲴(Xenocypris david)、赤眼鳟(Squaliobarbus curriculus)等物种渔获量已大幅下降。调查发现入侵鱼类4种,其中露斯塔野鲮(Labeo rohita)、下口鲶(Hypostomus plecostomus)和尼罗非鲫在20世纪80年代调查中未发现,为新记录种。调查结果表明增江地区鱼类组成发生了较大变化,而这些变化可能是由该地区大规模挖沙、水坝建设、不合理捕捞、外来鱼类入侵、水域污染等因素导致。 展开更多
关键词 鱼类资源 群落变动 人为干扰 增江
原文传递
Community responses to extreme climatic conditions 被引量:2
4
作者 Frederic JIGUET Lluis BROTONS Vincent DEVICTOR 《Current Zoology》 SCIE CAS CSCD 北大核心 2011年第3期406-413,共8页
Species assemblages and natural communities are increasingly impacted by changes in the frequency and severity of extreme climatic events. Here we propose a brief overview of expected and demonstrated direct and indir... Species assemblages and natural communities are increasingly impacted by changes in the frequency and severity of extreme climatic events. Here we propose a brief overview of expected and demonstrated direct and indirect impacts of extreme events on animal communities. We show that differential impacts on basic biological parameters of individual species can lead to strong changes in community composition and structure with the potential to considerably modify the functional traits of the community. Sudden disequilibria have even been shown to induce irreversible shifts in marine ecosystems, while cascade effects on various taxonomic groups have been highlighted in Mediterranean forests. Indirect effects of extreme climatic events are expected when event-induced habitat changes (e.g. soil stability, vegetation composition, water flows altered by droughts, floods or hurricanes) have differential consequences on species assembled within the communities. Moreover, in increasing the amplitude of trophic mismatches, extreme events are likely to turn many systems into ecological traps under climate change. Finally, we propose a focus on the potential impacts of an extreme heat wave on local assemblages as an empirical case study, analysing monitoring data on breeding birds collected in France. In this example, we show that despite specific populations were differently affected by local temperature anomalies, communities seem to be unaffected by a sudden heat wave. These results suggest that communities are tracking climate change at the highest possible rate [Current Zoology 57 (3): 406-413, 2011]. 展开更多
关键词 Bird community Climate change DROUGHT Heat wave HURRICANE
原文传递
Soil Microbiological Activity and Carbon Dynamics in the Current Climate Change Scenarios:A Review 被引量:14
5
作者 Javid A.SOFI Aabid H.LONE +5 位作者 Mumtaz A.GANIE Naseer A.DAR Sajad A.BHAT Malik MUKHTAR Mohd Ashraf DAR Shazia RAMZAN 《Pedosphere》 SCIE CAS CSCD 2016年第5期577-591,共15页
Microbial activities are affected by a myriad of factors with end points involved in nutrient cycling and carbon sequestration issues.Because of their prominent role in the global carbon balance and their possible rol... Microbial activities are affected by a myriad of factors with end points involved in nutrient cycling and carbon sequestration issues.Because of their prominent role in the global carbon balance and their possible role in carbon sequestration, soil microbes are very important organisms in relation to global climate changes. This review focuses mainly on the responses of soil microbes to climate changes and subsequent effects on soil carbon dynamics. An overview table regarding extracellular enzyme activities(EAA) with all relevant literature data summarizes the effects of different ecosystems under various experimental treatments on EAA. Increasing temperature, altered soil moisture regimes, and elevated carbon dioxide significantly affect directly or indirectly soil microbial activities.High temperature regimes can increase the microbial activities which can provide positive feedback to climate change, whereas lower moisture condition in pedosystem can negate the increase, although the interactive effects still remain unanswered. Shifts in soil microbial community in response to climate change have been determined by gene probing, phospholipid fatty acid analysis(PLFA),terminal restriction length polymorphism(TRFLP), and denaturing gradient gel electrophoresis(DGGE), but in a recent investigations,omic technological interventions have enabled determination of the shift in soil microbe community at a taxa level, which can provide very important inputs for modeling C sequestration process. The intricacy and diversity of the soil microbial population and how it responds to climate change are big challenges, but new molecular and stable isotope probing tools are being developed for linking fluctuations in microbial diversity to ecosystem function. 展开更多
关键词 carbon cycling carbon dioxide carbon exchange carbon sequestration microbe community soil enzymes soil moisture soil temperature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部