利用2021年2—5月和8—11月青藏高原东坡高海拔宇宙线观测站(Large High Altitude Air Shower Observatory,LHAASO)多通道微波辐射计观测的高时空分辨率温度廓线数据,并结合2021年ERA5再分析资料,分析大气边界层高度(Atmospheric Bounda...利用2021年2—5月和8—11月青藏高原东坡高海拔宇宙线观测站(Large High Altitude Air Shower Observatory,LHAASO)多通道微波辐射计观测的高时空分辨率温度廓线数据,并结合2021年ERA5再分析资料,分析大气边界层高度(Atmospheric Boundary Layer Height,ABLH)的日、月和季平均日变化规律。结果表明:(1)晴朗天气的ABLH具有明显的波峰波谷变化,日出后地表温度升高,ABLH也随之持续升高,最大值通常出现在午后,至18时左右迅速降低,日落之后降至最低。(2)一年之中,4月平均ABLH最大,约为1200 m,11月只有600 m。ABLH白天波动大,夜晚稳定,平均降至400 m左右。基于ERA5再分析资料反演的ABLH整体结果偏小,但具有与微波辐射计一致的变化趋势。(3)ABLH最大值出现在春季,夏季和秋季次之,冬季最小,且均在14:00—15:00达到峰值。展开更多
格陵兰冰盖全部融化将导致全球海平面上升7m,因此准确估计格陵兰冰盖质量变化过程对理解其对全球气候变化响应和反馈作用具有重要意义。基于Gravity Recovery and Climate Experiment(GRACE)卫星及后继卫星GRACE-FollowOn(GRACE-FO)提...格陵兰冰盖全部融化将导致全球海平面上升7m,因此准确估计格陵兰冰盖质量变化过程对理解其对全球气候变化响应和反馈作用具有重要意义。基于Gravity Recovery and Climate Experiment(GRACE)卫星及后继卫星GRACE-FollowOn(GRACE-FO)提供的近20年的月时变重力场数据,以及EuropeanRemote Sensing(ERS-2)、Envisat和CryoSat-2等卫星测高数据,本文对比分析了2002年4月-2020年12月格陵兰冰盖质量变化特征。研究结果表明:(1)卫星重力点质量模型与卫星测高产品估计的质量变化趋势空间分布较为一致,均表明格陵兰冰盖边缘低海拔区域质量亏损严重而内部高原存在质量累积。(2) 2002-2020年格陵兰质量损失对全球平均海平面变化贡献为0.73±0.01mm·a^(-1)。(3)格陵兰冰盖西南部和西北部对海平面变化的贡献占格陵兰总贡献量的43.69%,为主要的海平面上升贡献区。(4)格陵兰冰盖流域尺度的分析表明,Goddard Space Flight Center(GSFC)点质量模型与卫星测高估计的结果更为一致。展开更多
文摘格陵兰冰盖全部融化将导致全球海平面上升7m,因此准确估计格陵兰冰盖质量变化过程对理解其对全球气候变化响应和反馈作用具有重要意义。基于Gravity Recovery and Climate Experiment(GRACE)卫星及后继卫星GRACE-FollowOn(GRACE-FO)提供的近20年的月时变重力场数据,以及EuropeanRemote Sensing(ERS-2)、Envisat和CryoSat-2等卫星测高数据,本文对比分析了2002年4月-2020年12月格陵兰冰盖质量变化特征。研究结果表明:(1)卫星重力点质量模型与卫星测高产品估计的质量变化趋势空间分布较为一致,均表明格陵兰冰盖边缘低海拔区域质量亏损严重而内部高原存在质量累积。(2) 2002-2020年格陵兰质量损失对全球平均海平面变化贡献为0.73±0.01mm·a^(-1)。(3)格陵兰冰盖西南部和西北部对海平面变化的贡献占格陵兰总贡献量的43.69%,为主要的海平面上升贡献区。(4)格陵兰冰盖流域尺度的分析表明,Goddard Space Flight Center(GSFC)点质量模型与卫星测高估计的结果更为一致。