Many zeotropic refrigerant mixtures are proposed as alternatives to some chlorofluorocar-bons (CFCs) and hydrochlorofluorocarbons ( HCFCs). An advantage of zeotropic mixtures is the possibility of reduction in entropy...Many zeotropic refrigerant mixtures are proposed as alternatives to some chlorofluorocar-bons (CFCs) and hydrochlorofluorocarbons ( HCFCs). An advantage of zeotropic mixtures is the possibility of reduction in entropy generation by matching the temperature glidings of refrigerant and heat-transfer fluid in both condenser and evaporator. Zeotropic mixtures are compared with pure re-frigerants to evaluate their exergetic losses. On the other hand, the special phenomena which result from temperature gliding are proved by experiments. A simple equation is obtained, to evaluate dif-ferent zeotropic mixtures' exergetic losses. The maximum flow rate of heat-transfer fluids is found in order that refrigerants phase change can be completed. Lastly, some examples of zeotropic mix-tures ( R407C, R405A and R414B) are given, and their exergetic losses and maximum flow rate of heat-transfer fluids in condenser are forecasted.展开更多
In heat exchangers, the magnitude of Nu of each duct is influenced by the temperature field, since the ratio of heat capacity rate will influence the matching status of the temperature field between contacting ducts, ...In heat exchangers, the magnitude of Nu of each duct is influenced by the temperature field, since the ratio of heat capacity rate will influence the matching status of the temperature field between contacting ducts, the total heat transfer coefficient is related with the ratio of heat capacity rate. Considering this relationship, a new method for analyzing heat exchanger is proposed - matching of temperature field. First, for a single duct with the temperature field varying exponentially along the flow direction, its Nu is calculated. Then under the hypothesis that the thermal resistance of the wall is negligible, the matching condition was set like this: both the temperature and heat flux are equal for the hot and cold fluids at the wall, so the matching relationship of parameter that describes the temperature field of the hot and cold fluids, was obtained. Finally the relationship between the total Nu and the ratio of heat capacity rate along with the ratio of inherent thermal resistance is obtained. Compared with traditional analyzing methods, the temperature matching method can be used to get the total heat transfer coefficient directly, and also be used for optimization of heat exchanger design. For a parallel flow, the optimal ratio of heat capacity rate is reciprocal to the ratio of inherent thermal resistance, and for a counter flow, the optimal ratio of heat capacity rate is zero or infinity.展开更多
基金Supported by National Natural Science Foundation of China( No. 50476062) .
文摘Many zeotropic refrigerant mixtures are proposed as alternatives to some chlorofluorocar-bons (CFCs) and hydrochlorofluorocarbons ( HCFCs). An advantage of zeotropic mixtures is the possibility of reduction in entropy generation by matching the temperature glidings of refrigerant and heat-transfer fluid in both condenser and evaporator. Zeotropic mixtures are compared with pure re-frigerants to evaluate their exergetic losses. On the other hand, the special phenomena which result from temperature gliding are proved by experiments. A simple equation is obtained, to evaluate dif-ferent zeotropic mixtures' exergetic losses. The maximum flow rate of heat-transfer fluids is found in order that refrigerants phase change can be completed. Lastly, some examples of zeotropic mix-tures ( R407C, R405A and R414B) are given, and their exergetic losses and maximum flow rate of heat-transfer fluids in condenser are forecasted.
基金supported by the National Basic Research Program of China"973"Program)(Grant No.2011CB710705)the strategic priority research program of the Chinese Academy of Sciences(Grant No.XDA03010500)
文摘In heat exchangers, the magnitude of Nu of each duct is influenced by the temperature field, since the ratio of heat capacity rate will influence the matching status of the temperature field between contacting ducts, the total heat transfer coefficient is related with the ratio of heat capacity rate. Considering this relationship, a new method for analyzing heat exchanger is proposed - matching of temperature field. First, for a single duct with the temperature field varying exponentially along the flow direction, its Nu is calculated. Then under the hypothesis that the thermal resistance of the wall is negligible, the matching condition was set like this: both the temperature and heat flux are equal for the hot and cold fluids at the wall, so the matching relationship of parameter that describes the temperature field of the hot and cold fluids, was obtained. Finally the relationship between the total Nu and the ratio of heat capacity rate along with the ratio of inherent thermal resistance is obtained. Compared with traditional analyzing methods, the temperature matching method can be used to get the total heat transfer coefficient directly, and also be used for optimization of heat exchanger design. For a parallel flow, the optimal ratio of heat capacity rate is reciprocal to the ratio of inherent thermal resistance, and for a counter flow, the optimal ratio of heat capacity rate is zero or infinity.