The sideward permafrost along the Qinghai-Tibet Highway (QTH) contains massive ground-ice and is at a relatively high temperature.Under the influence of the steady increase of human activities,the permafrost environme...The sideward permafrost along the Qinghai-Tibet Highway (QTH) contains massive ground-ice and is at a relatively high temperature.Under the influence of the steady increase of human activities,the permafrost environment has been changed greatly for a long time.At present,the permafrost becomes warm and rapidly degenerates,including the decline of the permafrost table,rising of the ground temperature,shortening of the length of frozen section,and extension of range of melting region.Some thaw hazards (e.g.thaw slumping and thermokarst pond) have widely occurred along both sides of the roadbed.In addition,due to the incomplete construction management,the vegetation adjacent to the highway is seriously damaged or eradicated,resulting in the land desertification and ecosystem out of balance.The dust,waste and garbage brought by drivers,passengers,maintenance workers,and transportations may also pollute the permafrost environment.展开更多
Topography around the Yellow River mouth has changed greatly in recent years, but studies on the current state of ma- rine dynamics off the Yellow River mouth are relatively scarce. This paper uses a two-dimension num...Topography around the Yellow River mouth has changed greatly in recent years, but studies on the current state of ma- rine dynamics off the Yellow River mouth are relatively scarce. This paper uses a two-dimension numerical model (MIKE 21) to reveal the tidal and wave dynamics in 2012, and conducts comparative analysis of the changes from 1996 to 2012. The results show that M2 amphidromic point moved southeastward by 11 kin. It further reveals that the tides around the Yellow River mouth are relatively stable due to the small variations in the tidal constituents. Over the study period, there is no noticeable change in the distribution of tidal types and tidal range, and the mean tidal range off the river mouth during the period studied is 0.5-1.1 m. However, the tidal currents changed greatly due to large change in topography. It is observed that the area with strong tidal currents shifted from the old river mouth (1976-1996) to the modem river mouth (1996-present). While the tidal current speeds decreased continually off the old river mouth, they increased off the modem river mouth. The Maximum Tidal Current Speed (MTCS) reached 1.4 m s-1, and the maximum current speed of 50-year return period reached 2.8 m s-1. Waves also changed greatly due to change in topography. The significant wave height (H1/3) of 50-year return period changed proportionately with the water depth, and the ratio of Hi/3 to depth being 0.4-0.6. H1/3 of the 50-year return period in erosion zone increased continually with increasing water depth, and the rate of change varied between 0.06 and 0.07myr-1. Based on the results of this study, we infer that in the future, the modem river mouth will protrude gradually northward, while the erosion zone, comprising the old river mouth and area between the modern river mouth and the old river mouth (Intermediate region) will continue to erode. As the modem river mouth protrudes towards the sea, there will be a gradual increase in the current speed and decrease in wave height. Conversely, the old river mouth will retreat, with gradual decrease in current speed and increase in wave height. As more coastal constructions spring up around the Yellow River mouth in the future, we recommend that variation in hydrodynamics over time should be taken into consideration when designing such coastal constructions.展开更多
The silica fiber reinforced silica and boron nitride-based composites (SiO2f/SiO2-BN) were prepared firstly via the sol-gel method and then the urea route, and the effects of oxidation treatment on the component, st...The silica fiber reinforced silica and boron nitride-based composites (SiO2f/SiO2-BN) were prepared firstly via the sol-gel method and then the urea route, and the effects of oxidation treatment on the component, structure, mechanical and dielectric properties of the composites were investigated. The results show that the oxidation treatment at 450 ℃ will not impair the structure of boron nitride, and carbon is the main impurity with the excessive urea. The density of SiO2f/SiO2-BN composites is 1.81 g/cm3, and the flexural strength and elastic modulus are 113.9 MPa and 36.5 GPa, respectively. After oxidation treatment, the density varies to 1.80 g/cm3, and the flexural strength and elastic modulus are decreased to 58.9 MPa and 9.4 GPa, respectively. The mechanical properties of the composites are severely damaged, but they still exhibit a good toughness. The composites show excellent dielectric properties with the dielectric constant and loss tangent being 3.22 and 0.003 9, respectively, which indicates that the oxidation treatment is ineffective to improve the dielectric properties of SiOzf/SiO2-BN composites.展开更多
Tree-ring based temperature reconstructions have successfully inferred the past inter-annual to millennium scales summer temperature variability. A clear relationship between annual and summer temperatures can provide...Tree-ring based temperature reconstructions have successfully inferred the past inter-annual to millennium scales summer temperature variability. A clear relationship between annual and summer temperatures can provide insights into tile variability of past annual mean tem- perature from the reconstructed summer temperature. However, how similar are summer and annual temperatures is to a large extent still unknown. This study aims at investigating the relationship between annual and summer temperatures at different timescales in central Sweden during the last millennium. The temperature variability in central Sweden can represent large parts of Scandinavia which has been a key region for dendroclimatological research. The observed annual and summer temperatures during 1901-2005 were firstly decomposed into different frequency bands using ensemble empirical mode decomposition (EEMD) method, and then the scale-dependent relationship was quantified using Pearson correlation coefficients. The relationship between the observed annual and summer temperatures determined by the instrumental data was subsequently used to evaluate 7 climate models. The model with the best performance was used to infer the relationship for the last millennium. The results show that the relationship between the observed annual and summer temperatures becomes stronger as the timescale increases, except for the 4--16 years timescales at which it does not show any relationship. The summer temperature variability at short timescales (2--4 years) shows much higher variance than the annual variability, while the annual temperature variability at long timescales (〉32 years) has a much higher variance than the summer one. During the last millennium, the simulated summer temperature also shows higher variance at the short timescales (2-4 years) and lower variance at the long timescales (〉1024 years) than those of the annual temperature. The relationship between the two temperatures is generally close at the long timescales, and weak at the short timescales. Overall the summer temperature variability cannot well reflect the annual mean temperature variability for the study region during both the 20th century and the last millennium. Furthermore, all the climate models examined overestimate the annual mean temperature variance at the 2--4 years timescales, which indicates that the overestimate could be one of reasons why the volcanic eruption induced cooling is larger in climate models than in proxy data.展开更多
Based on the detailed planktonic foraminifera faunal count and Globigerinoides ruber Mg/Ca ratio analysis of Core MD05-2901,we reconstructed the longest Mg/Ca sea surface temperature(SST) sequence of the upwelling are...Based on the detailed planktonic foraminifera faunal count and Globigerinoides ruber Mg/Ca ratio analysis of Core MD05-2901,we reconstructed the longest Mg/Ca sea surface temperature(SST) sequence of the upwelling area off Vietnam in the western South China Sea(SCS).Ocean environment,especially the SST variation,over the last 450 ka is discussed in this study.SST variation has typical glacial/interglacial alternations from 23.03°C to 29.93°C with a glacial/interglacial difference of 4.8°C on average.SST during the interglacial periods fluctuates significantly,up to 5.6°C,which is larger than the average glacial/interglacial difference.SST variation during the glacial periods is much smaller.Spectrum analysis shows that SST change dominates on the typical Milankovitch cycles,such as 112,40.7 and 23.6 ka.Evident leading of SST variation against the δ 18 O can be observed during the Terminations 1,4,and 5,which is confirmed by their cross-spectrum analysis on these cycles.MD05-2901 is the first core in the South China Sea that has multi-SST records,such as SST Mg/Ca,k' 37 U-SST and planktonic foraminiferal fauna-based SST.SSTs from different methods can be correlated with each other in glacial/interglacial time scale,whereas SST Mg/Ca records abrupt climate change events more clearly.SST Mg/Ca at MD05-2901 since MIS 5 is 0.6°C lower than that of the southern SCS on average,but equivalent to or even 2°C lower than that of the northern SCS during some interglacial period.The SST character of MD05-2901 reflects less influence of latitude,but an important role of the regional upwelling driven by the eastern Asian summer monsoon,and suggests a stronger upwelling during the interglacial periods in the western SCS.展开更多
The oxygen isotopic values of aquatic plant cellulose and carbonates in Lake Caohai sediments were measured using a continuous flow isotopic ratio mass spectrometer(CF-IRMS).Because of predictable oxygen isotopic frac...The oxygen isotopic values of aquatic plant cellulose and carbonates in Lake Caohai sediments were measured using a continuous flow isotopic ratio mass spectrometer(CF-IRMS).Because of predictable oxygen isotopic fractionation between cellulose and its source water,the oxygen isotopic composition of paleo-lake water has been established quantitatively.Combined oxygen isotopic values of cellulose and carbonates were used in the‘Craig’equation to determine paleotemperatures and their variation in the lake during the past 500 years.Results show that the paleotemperature trend correlates well with meteorological records from Weining.There are four notable cold intervals at Lake Caohai over the past 500 years,namely 1540–1570AD,1670–1715AD,1780–1870AD and 1900–1930AD,and the former three cold intervals have been observed in the conventional Little Ice Age(LIA).These cold periods at Lake Caohai correspond well with those recorded from tree ring,peat,and ice core data from adjacent regions,particularly temperature those inferred fromδ18O of peat cellulose from Hongyuan Southwestern China.The trend in paleotemperature variations at Lake Caohai are also consistent with both the change of Indian summer monsoon,derived fromδ18O values of a stalagmite in Dongge,and a recorded shift in solar activity.The findings of this study illustrate that coupled analysis ofδ18O values of cellulose and carbonates from lake sediments may be used as a paleotemperature proxy.These results also provide further evidence of the existence of LIA in southwestern China.展开更多
New statistics are proposed to estimate and test the structural change when the data dimension is comparable to or larger than the sample size. Consistency of the new statistic in estimating the change point position ...New statistics are proposed to estimate and test the structural change when the data dimension is comparable to or larger than the sample size. Consistency of the new statistic in estimating the change point position is established under the alternative hypothesis. The asymptotic distribution of the new statistic in testing the existence of a change point is obtained under the null hypothesis. Some simulation results are presented which show that the numerical performance of our method is satisfactory. The method is illustrated via the analysis of the house price index of US.展开更多
We introduce the so-called naive tests and give a brief review of the new developments. Naive testing methods are easy to understand and perform robustly, especially when the dimension is large. We focus mainly on rev...We introduce the so-called naive tests and give a brief review of the new developments. Naive testing methods are easy to understand and perform robustly, especially when the dimension is large. We focus mainly on reviewing some naive testing methods for the mean vectors and covariance matrices of high-dimensional populations, and we believe that this naive testing approach can be used widely in many other testing problems.展开更多
Despite many studies on reconstructing the climate changes over the last millennium in China,the cause of the China's climate change remains unclear.We used the UVic Earth System Climate Model(UVic Model),an Earth...Despite many studies on reconstructing the climate changes over the last millennium in China,the cause of the China's climate change remains unclear.We used the UVic Earth System Climate Model(UVic Model),an Earth system model of intermediate complexity,to investigate the contributions of climate forcings(e.g.solar insolation variability,anomalous volcanic aerosols,greenhouse gas,solar orbital change,land cover changes,and anthropogenic sulfate aerosols) to surface air temperature over East China in the past millennium.The simulation of the UVic Model could reproduce the three main characteristic periods(e.g.the Medieval Warm Period(MWP),the Little Ice Age(LIA),and the 20th Century Warming Period(20CWP)) of the northern hemisphere and East China,which were consistent with the corresponding reconstructed air temperatures at century scales.The simulation result reflected that the air temperature anomalies of East China were larger than those of the global air temperature during the MWP and the first half of 20CWP and were lower than those during the LIA.The surface air temperature of East China over the past millennium has been divided into three periods in the MWP,four in the LIA,and one in the 20CWP.The MWP of East China was caused primarily by solar insolation and secondarily by volcanic aerosols.The variation of the LIA was dominated by the individual sizes of the contribution of solar insolation variability,greenhouse gas,and volcano aerosols.Greenhouse gas and volcano aerosols were the main forcings of the third and fourth periods of the LIA,respectively.We examined the nonlinear responses among the natural and anthropogenic forcings in terms of surface air temperature over East China.The nonlinear responses between the solar orbit change and anomalous volcano aerosols and those between the greenhouse gases and land cover change(or anthropogenic sulfate aerosols) all contributed approximately 0.2℃ by the end of 20th century.However,the output of the energy-moisture balance atmospheric model from UVic showed no obvious nonlinear responses between anthropogenic and natural forcings.The nonlinear responses among all the climate forcings(both anthropogenic and natural forcings) contributed to a temperature increase of approximately 0.27℃ at the end of the 20th century,accounting for approximately half of the warming during this period;the remainder was due to the climate forcings themselves.展开更多
基金Project(KZCX2-YW-Q03-04) supported by the Important Orientation Projects of the Chinese Academy of SciencesProject(41030741) supported by the National Natural Science of ChinaProject(2010CB434813) supported by the National Basic Research Program of China
文摘The sideward permafrost along the Qinghai-Tibet Highway (QTH) contains massive ground-ice and is at a relatively high temperature.Under the influence of the steady increase of human activities,the permafrost environment has been changed greatly for a long time.At present,the permafrost becomes warm and rapidly degenerates,including the decline of the permafrost table,rising of the ground temperature,shortening of the length of frozen section,and extension of range of melting region.Some thaw hazards (e.g.thaw slumping and thermokarst pond) have widely occurred along both sides of the roadbed.In addition,due to the incomplete construction management,the vegetation adjacent to the highway is seriously damaged or eradicated,resulting in the land desertification and ecosystem out of balance.The dust,waste and garbage brought by drivers,passengers,maintenance workers,and transportations may also pollute the permafrost environment.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41030856 and 41006024)the Foundation of Shandong Province (Grant No. BS2012HZ022)+1 种基金the Project of China Geological Survey (Grant No. GZH201100203)the Project of Taishan Scholar
文摘Topography around the Yellow River mouth has changed greatly in recent years, but studies on the current state of ma- rine dynamics off the Yellow River mouth are relatively scarce. This paper uses a two-dimension numerical model (MIKE 21) to reveal the tidal and wave dynamics in 2012, and conducts comparative analysis of the changes from 1996 to 2012. The results show that M2 amphidromic point moved southeastward by 11 kin. It further reveals that the tides around the Yellow River mouth are relatively stable due to the small variations in the tidal constituents. Over the study period, there is no noticeable change in the distribution of tidal types and tidal range, and the mean tidal range off the river mouth during the period studied is 0.5-1.1 m. However, the tidal currents changed greatly due to large change in topography. It is observed that the area with strong tidal currents shifted from the old river mouth (1976-1996) to the modem river mouth (1996-present). While the tidal current speeds decreased continually off the old river mouth, they increased off the modem river mouth. The Maximum Tidal Current Speed (MTCS) reached 1.4 m s-1, and the maximum current speed of 50-year return period reached 2.8 m s-1. Waves also changed greatly due to change in topography. The significant wave height (H1/3) of 50-year return period changed proportionately with the water depth, and the ratio of Hi/3 to depth being 0.4-0.6. H1/3 of the 50-year return period in erosion zone increased continually with increasing water depth, and the rate of change varied between 0.06 and 0.07myr-1. Based on the results of this study, we infer that in the future, the modem river mouth will protrude gradually northward, while the erosion zone, comprising the old river mouth and area between the modern river mouth and the old river mouth (Intermediate region) will continue to erode. As the modem river mouth protrudes towards the sea, there will be a gradual increase in the current speed and decrease in wave height. Conversely, the old river mouth will retreat, with gradual decrease in current speed and increase in wave height. As more coastal constructions spring up around the Yellow River mouth in the future, we recommend that variation in hydrodynamics over time should be taken into consideration when designing such coastal constructions.
基金Projects(50902150,90916019) supported by the National Natural Science Foundation of ChinaProject (9140C8203040905) supported by the State Key Laboratory Foundation of ChinaProject(S100103) supported by the Graduate Innovation Foundation of National University of Defense Technology,China
文摘The silica fiber reinforced silica and boron nitride-based composites (SiO2f/SiO2-BN) were prepared firstly via the sol-gel method and then the urea route, and the effects of oxidation treatment on the component, structure, mechanical and dielectric properties of the composites were investigated. The results show that the oxidation treatment at 450 ℃ will not impair the structure of boron nitride, and carbon is the main impurity with the excessive urea. The density of SiO2f/SiO2-BN composites is 1.81 g/cm3, and the flexural strength and elastic modulus are 113.9 MPa and 36.5 GPa, respectively. After oxidation treatment, the density varies to 1.80 g/cm3, and the flexural strength and elastic modulus are decreased to 58.9 MPa and 9.4 GPa, respectively. The mechanical properties of the composites are severely damaged, but they still exhibit a good toughness. The composites show excellent dielectric properties with the dielectric constant and loss tangent being 3.22 and 0.003 9, respectively, which indicates that the oxidation treatment is ineffective to improve the dielectric properties of SiOzf/SiO2-BN composites.
文摘Tree-ring based temperature reconstructions have successfully inferred the past inter-annual to millennium scales summer temperature variability. A clear relationship between annual and summer temperatures can provide insights into tile variability of past annual mean tem- perature from the reconstructed summer temperature. However, how similar are summer and annual temperatures is to a large extent still unknown. This study aims at investigating the relationship between annual and summer temperatures at different timescales in central Sweden during the last millennium. The temperature variability in central Sweden can represent large parts of Scandinavia which has been a key region for dendroclimatological research. The observed annual and summer temperatures during 1901-2005 were firstly decomposed into different frequency bands using ensemble empirical mode decomposition (EEMD) method, and then the scale-dependent relationship was quantified using Pearson correlation coefficients. The relationship between the observed annual and summer temperatures determined by the instrumental data was subsequently used to evaluate 7 climate models. The model with the best performance was used to infer the relationship for the last millennium. The results show that the relationship between the observed annual and summer temperatures becomes stronger as the timescale increases, except for the 4--16 years timescales at which it does not show any relationship. The summer temperature variability at short timescales (2--4 years) shows much higher variance than the annual variability, while the annual temperature variability at long timescales (〉32 years) has a much higher variance than the summer one. During the last millennium, the simulated summer temperature also shows higher variance at the short timescales (2-4 years) and lower variance at the long timescales (〉1024 years) than those of the annual temperature. The relationship between the two temperatures is generally close at the long timescales, and weak at the short timescales. Overall the summer temperature variability cannot well reflect the annual mean temperature variability for the study region during both the 20th century and the last millennium. Furthermore, all the climate models examined overestimate the annual mean temperature variance at the 2--4 years timescales, which indicates that the overestimate could be one of reasons why the volcanic eruption induced cooling is larger in climate models than in proxy data.
基金supported by the CAS Knowledge Innovation Projects (Grant No.KZCX-YW-155-2)National Natural Science Foundation of China (Grant Nos. 40879020 and 41106035)+1 种基金National Basic Research Program of China (Grant No. 2007CB815902)State Key Laboratory of Marine Geology,Tongji University (Grant No. G0901)
文摘Based on the detailed planktonic foraminifera faunal count and Globigerinoides ruber Mg/Ca ratio analysis of Core MD05-2901,we reconstructed the longest Mg/Ca sea surface temperature(SST) sequence of the upwelling area off Vietnam in the western South China Sea(SCS).Ocean environment,especially the SST variation,over the last 450 ka is discussed in this study.SST variation has typical glacial/interglacial alternations from 23.03°C to 29.93°C with a glacial/interglacial difference of 4.8°C on average.SST during the interglacial periods fluctuates significantly,up to 5.6°C,which is larger than the average glacial/interglacial difference.SST variation during the glacial periods is much smaller.Spectrum analysis shows that SST change dominates on the typical Milankovitch cycles,such as 112,40.7 and 23.6 ka.Evident leading of SST variation against the δ 18 O can be observed during the Terminations 1,4,and 5,which is confirmed by their cross-spectrum analysis on these cycles.MD05-2901 is the first core in the South China Sea that has multi-SST records,such as SST Mg/Ca,k' 37 U-SST and planktonic foraminiferal fauna-based SST.SSTs from different methods can be correlated with each other in glacial/interglacial time scale,whereas SST Mg/Ca records abrupt climate change events more clearly.SST Mg/Ca at MD05-2901 since MIS 5 is 0.6°C lower than that of the southern SCS on average,but equivalent to or even 2°C lower than that of the northern SCS during some interglacial period.The SST character of MD05-2901 reflects less influence of latitude,but an important role of the regional upwelling driven by the eastern Asian summer monsoon,and suggests a stronger upwelling during the interglacial periods in the western SCS.
基金supported by the National Natural Science Foundation of China(Grant No.40673068)the National Science and Technology Support Program of China(Grant No.2011BAC02B0201)the Natural Science Foundation of Guizhou Province,China
文摘The oxygen isotopic values of aquatic plant cellulose and carbonates in Lake Caohai sediments were measured using a continuous flow isotopic ratio mass spectrometer(CF-IRMS).Because of predictable oxygen isotopic fractionation between cellulose and its source water,the oxygen isotopic composition of paleo-lake water has been established quantitatively.Combined oxygen isotopic values of cellulose and carbonates were used in the‘Craig’equation to determine paleotemperatures and their variation in the lake during the past 500 years.Results show that the paleotemperature trend correlates well with meteorological records from Weining.There are four notable cold intervals at Lake Caohai over the past 500 years,namely 1540–1570AD,1670–1715AD,1780–1870AD and 1900–1930AD,and the former three cold intervals have been observed in the conventional Little Ice Age(LIA).These cold periods at Lake Caohai correspond well with those recorded from tree ring,peat,and ice core data from adjacent regions,particularly temperature those inferred fromδ18O of peat cellulose from Hongyuan Southwestern China.The trend in paleotemperature variations at Lake Caohai are also consistent with both the change of Indian summer monsoon,derived fromδ18O values of a stalagmite in Dongge,and a recorded shift in solar activity.The findings of this study illustrate that coupled analysis ofδ18O values of cellulose and carbonates from lake sediments may be used as a paleotemperature proxy.These results also provide further evidence of the existence of LIA in southwestern China.
基金supported by National Natural Science Foundation of China (Grant No. 11571337)the Ministry of Education of Singapore (Grant No. # ARC 14/11)the National University of Singapore (Grant No. R-155-151-112)
文摘New statistics are proposed to estimate and test the structural change when the data dimension is comparable to or larger than the sample size. Consistency of the new statistic in estimating the change point position is established under the alternative hypothesis. The asymptotic distribution of the new statistic in testing the existence of a change point is obtained under the null hypothesis. Some simulation results are presented which show that the numerical performance of our method is satisfactory. The method is illustrated via the analysis of the house price index of US.
基金supported by National Natural Science Foundation of China (Grant Nos. 11301063 and 11571067)Science and Technology Development Foundation of Jilin (Grant No. 20160520174JH)Science and Technology Foundation of Jilin during the "13th Five-Year Plan"
文摘We introduce the so-called naive tests and give a brief review of the new developments. Naive testing methods are easy to understand and perform robustly, especially when the dimension is large. We focus mainly on reviewing some naive testing methods for the mean vectors and covariance matrices of high-dimensional populations, and we believe that this naive testing approach can be used widely in many other testing problems.
基金supported by the Major Project of National Natural Science Foundation of China (Grant No. 40890052)National Basic Research Progam of China (Grant No. 2007CB815901)+1 种基金National Natural Science Foundation of China (Grant No. 40805036)the Basic Research Fund of CAMS
文摘Despite many studies on reconstructing the climate changes over the last millennium in China,the cause of the China's climate change remains unclear.We used the UVic Earth System Climate Model(UVic Model),an Earth system model of intermediate complexity,to investigate the contributions of climate forcings(e.g.solar insolation variability,anomalous volcanic aerosols,greenhouse gas,solar orbital change,land cover changes,and anthropogenic sulfate aerosols) to surface air temperature over East China in the past millennium.The simulation of the UVic Model could reproduce the three main characteristic periods(e.g.the Medieval Warm Period(MWP),the Little Ice Age(LIA),and the 20th Century Warming Period(20CWP)) of the northern hemisphere and East China,which were consistent with the corresponding reconstructed air temperatures at century scales.The simulation result reflected that the air temperature anomalies of East China were larger than those of the global air temperature during the MWP and the first half of 20CWP and were lower than those during the LIA.The surface air temperature of East China over the past millennium has been divided into three periods in the MWP,four in the LIA,and one in the 20CWP.The MWP of East China was caused primarily by solar insolation and secondarily by volcanic aerosols.The variation of the LIA was dominated by the individual sizes of the contribution of solar insolation variability,greenhouse gas,and volcano aerosols.Greenhouse gas and volcano aerosols were the main forcings of the third and fourth periods of the LIA,respectively.We examined the nonlinear responses among the natural and anthropogenic forcings in terms of surface air temperature over East China.The nonlinear responses between the solar orbit change and anomalous volcano aerosols and those between the greenhouse gases and land cover change(or anthropogenic sulfate aerosols) all contributed approximately 0.2℃ by the end of 20th century.However,the output of the energy-moisture balance atmospheric model from UVic showed no obvious nonlinear responses between anthropogenic and natural forcings.The nonlinear responses among all the climate forcings(both anthropogenic and natural forcings) contributed to a temperature increase of approximately 0.27℃ at the end of the 20th century,accounting for approximately half of the warming during this period;the remainder was due to the climate forcings themselves.