利用 23 a (1964—1986 年)的假潮资料,讨论了龙口港假潮的振幅、频率、周期和持续时间等;给出了导致假潮的各种天气形势和风场;分析了不同气象要素对假潮的贡献;探讨了大和特大振幅假潮的成因。分析结果表明:风场变化是导致龙...利用 23 a (1964—1986 年)的假潮资料,讨论了龙口港假潮的振幅、频率、周期和持续时间等;给出了导致假潮的各种天气形势和风场;分析了不同气象要素对假潮的贡献;探讨了大和特大振幅假潮的成因。分析结果表明:风场变化是导致龙口港假潮的直接原因;100 cm 左右和 >150 cm 的大和特大振幅假潮,是龙口港特殊地理环境、港湾及附近大范围海域骤猛的向港爆发性大风尤其强雷暴大风涌水在港内骤然积聚和海水惯性振荡的综合结果,该假潮具有较大危害性。展开更多
The wind field plays a decisive role in haze generation and dissipation processes over the Beijing- Tianjin-Hebei (BTH) region. Although geographically the BTH region is under the influence of the East Asian winter ...The wind field plays a decisive role in haze generation and dissipation processes over the Beijing- Tianjin-Hebei (BTH) region. Although geographically the BTH region is under the influence of the East Asian winter monsoon (EAWM), this study finds that common indices of the EAWM cannot adequately describe the actual wind speed changes in the BTH region.Thus, observational data are used to analyze the interannual variations of the winter wind field over the BTH region. The results show that the average winter wind speed is 2.0 m s-1, with a slight rate of decline of 0.01 m s-1 yr-1. In most cases, strong-wind years correspond to negative sea surface temperature (SST) anomalies over the tropical Pacific, whereas weak-wind years correspond to positive SST anomalies. Moreover, correlation and composite analyses show that the interannual variability is affected by multiple factors, including the following: (1) the pressure gradient in the high and middle latitudes of the Northern Hemisphere, as in strong-wind years the pressure gradient helps cold air move from high latitudes to middle latitudes; (2) the skin temperature in Eurasia, as low skin temperature in Eurasia in strong-wind years is conducive to the accumulation of cold air; and (3) the SST of the tropical Pacific east of the Philippines, as in strong-wind years the high temperature of this area affects the BTH region through anticyclonic activity and associated tropical circulation systems.展开更多
The statistical character of QuikSCAT scatterometer winds is showed. And Monthly change and special distribution character of strong wind frequency and monthly wind fields in South China Sea is analyzed. It is shown i...The statistical character of QuikSCAT scatterometer winds is showed. And Monthly change and special distribution character of strong wind frequency and monthly wind fields in South China Sea is analyzed. It is shown in the result that the QuikSCAT scatterometer winds can be relied upon for the South China Sea; two winds, one the wintertime northeasterly and the other summertime southwesterly. The northeasterly centers at the Bashi Strait and Taiwam Strait and its secondary center and the maximum center of the southwesterly are in the central and southern South China Sea.展开更多
The authors investigate the characteristics of propagation and the influence on tropical precipitation of 9–29-day intraseasonal variation over midlatitude East Asia during boreal winter, and find that the intraseaso...The authors investigate the characteristics of propagation and the influence on tropical precipitation of 9–29-day intraseasonal variation over midlatitude East Asia during boreal winter, and find that the intraseasonal wind signal can propagate both eastward and southward. In the case of eastward propagation, the intraseasonal wind signal is mainly confined to the midlatitudes, featuring eastward migration of anomalous cyclones and anticyclones. In the case of southward propagation, intraseasonal meridional wind perturbations may extend from the mid to the low latitudes, and even the equatorial region. The accompanying wind convergence/divergence induces anomalous precipitation in the near-equatorial regions, forming a north–south dipole precipitation anomaly pattern between the southern South China Sea and the eastern China– Japan region. An anomalous meridional overturning circulation plays an important role in linking tropical and midlatitude intraseasonal wind and precipitation variations.展开更多
Apparent moisture sink and water vapor transport flux are calculated by using NCAR/NCEP reanalyzed daily data for water vapor and wind fields at various levels from 1980 to 1989.With the aid of EOF analysis method,tem...Apparent moisture sink and water vapor transport flux are calculated by using NCAR/NCEP reanalyzed daily data for water vapor and wind fields at various levels from 1980 to 1989.With the aid of EOF analysis method,temporal and spatial characteristics of moisture budgets over Asian and Australian monsoon regions are studied.The results show that there is apparent seasonal transition of moistrue sink and water vapor transport between Asian monsoon region and Australian monsoon region.In winter,the Asian monsoon region is a moisture source,in which three cross-equatorial water vapor transport channels in the 'continent bridge',at 80°E and 40°E~50° transport water vapor to the Australian monsoon region and southern Indian Ocean which are moistrue sinks.In summer,Australian Monsoon region anmd southern Indian Ocean are moistrue sources and by the three cross-equatorial transport channels water vapor is transport to the Asian monsoon region which is a moisture sink.In spring and autumn,ITCZ is the main moisture sink and there is no apparent water vapor transport between Asian monsoon region and Australian monsoon region.展开更多
文摘利用 23 a (1964—1986 年)的假潮资料,讨论了龙口港假潮的振幅、频率、周期和持续时间等;给出了导致假潮的各种天气形势和风场;分析了不同气象要素对假潮的贡献;探讨了大和特大振幅假潮的成因。分析结果表明:风场变化是导致龙口港假潮的直接原因;100 cm 左右和 >150 cm 的大和特大振幅假潮,是龙口港特殊地理环境、港湾及附近大范围海域骤猛的向港爆发性大风尤其强雷暴大风涌水在港内骤然积聚和海水惯性振荡的综合结果,该假潮具有较大危害性。
基金supported by the National Natural Science Foundation of China[grant number 41176014]
文摘The wind field plays a decisive role in haze generation and dissipation processes over the Beijing- Tianjin-Hebei (BTH) region. Although geographically the BTH region is under the influence of the East Asian winter monsoon (EAWM), this study finds that common indices of the EAWM cannot adequately describe the actual wind speed changes in the BTH region.Thus, observational data are used to analyze the interannual variations of the winter wind field over the BTH region. The results show that the average winter wind speed is 2.0 m s-1, with a slight rate of decline of 0.01 m s-1 yr-1. In most cases, strong-wind years correspond to negative sea surface temperature (SST) anomalies over the tropical Pacific, whereas weak-wind years correspond to positive SST anomalies. Moreover, correlation and composite analyses show that the interannual variability is affected by multiple factors, including the following: (1) the pressure gradient in the high and middle latitudes of the Northern Hemisphere, as in strong-wind years the pressure gradient helps cold air move from high latitudes to middle latitudes; (2) the skin temperature in Eurasia, as low skin temperature in Eurasia in strong-wind years is conducive to the accumulation of cold air; and (3) the SST of the tropical Pacific east of the Philippines, as in strong-wind years the high temperature of this area affects the BTH region through anticyclonic activity and associated tropical circulation systems.
基金Key Scientific Project of Guangdong province Comprehensive application of satellite data in the monitoring and forecast of marine meteorology (99M05002G) Science and Technology Planning Project of Guangdong province Research on pre-warning techniques
文摘The statistical character of QuikSCAT scatterometer winds is showed. And Monthly change and special distribution character of strong wind frequency and monthly wind fields in South China Sea is analyzed. It is shown in the result that the QuikSCAT scatterometer winds can be relied upon for the South China Sea; two winds, one the wintertime northeasterly and the other summertime southwesterly. The northeasterly centers at the Bashi Strait and Taiwam Strait and its secondary center and the maximum center of the southwesterly are in the central and southern South China Sea.
基金supported by the National Natural Science Foundation of China [grant numbers 41530425,41721004,41475081,and 41775080]
文摘The authors investigate the characteristics of propagation and the influence on tropical precipitation of 9–29-day intraseasonal variation over midlatitude East Asia during boreal winter, and find that the intraseasonal wind signal can propagate both eastward and southward. In the case of eastward propagation, the intraseasonal wind signal is mainly confined to the midlatitudes, featuring eastward migration of anomalous cyclones and anticyclones. In the case of southward propagation, intraseasonal meridional wind perturbations may extend from the mid to the low latitudes, and even the equatorial region. The accompanying wind convergence/divergence induces anomalous precipitation in the near-equatorial regions, forming a north–south dipole precipitation anomaly pattern between the southern South China Sea and the eastern China– Japan region. An anomalous meridional overturning circulation plays an important role in linking tropical and midlatitude intraseasonal wind and precipitation variations.
基金Part One in Development Planning for National Key Fundamental Research (G1998040900)"South China Sea Monsoon Experiment Studies"caling Project A of National Ministry of Science and Technology
文摘Apparent moisture sink and water vapor transport flux are calculated by using NCAR/NCEP reanalyzed daily data for water vapor and wind fields at various levels from 1980 to 1989.With the aid of EOF analysis method,temporal and spatial characteristics of moisture budgets over Asian and Australian monsoon regions are studied.The results show that there is apparent seasonal transition of moistrue sink and water vapor transport between Asian monsoon region and Australian monsoon region.In winter,the Asian monsoon region is a moisture source,in which three cross-equatorial water vapor transport channels in the 'continent bridge',at 80°E and 40°E~50° transport water vapor to the Australian monsoon region and southern Indian Ocean which are moistrue sinks.In summer,Australian Monsoon region anmd southern Indian Ocean are moistrue sources and by the three cross-equatorial transport channels water vapor is transport to the Asian monsoon region which is a moisture sink.In spring and autumn,ITCZ is the main moisture sink and there is no apparent water vapor transport between Asian monsoon region and Australian monsoon region.