Strain rate effects on the stress-strain behavior of sand were investigated by performing special plane strain and triaxial compression tests on saturated and air-dried sand specimens. In these tests, the loading stra...Strain rate effects on the stress-strain behavior of sand were investigated by performing special plane strain and triaxial compression tests on saturated and air-dried sand specimens. In these tests, the loading strain rate was changed many times by a factor of up to 1 000 during otherwise monotonous loading at a constant axial strain rate. Test results show that the stress jump upon a stepwise change in the strain rate decays with an increase in the irreversible strain when monotonous loading continues at the changed strain rate and the amount of stress jump is essentially proportional to the instantaneous stress. Based on the amount of these stress jumps, a parameter fl called the rate-sensitivity coefficient is introduced to represent the quantity of the observed viscous properties of sand, which equals 0.021 3 and 0.024 2 respectively for Hostun and Toyoura sands. Further analyses on the results indicate that the effect of the presence of pore water is deemed to be negligible with sand and the fl value is rather independent of loading method, wet condition and confining pressure.展开更多
基金supported by National Natural Science Foundation of China(21276036)the Liaoning Provincial Nature Science Foundation of China(2014025018)+1 种基金the Foundation of Liaoning Educational Committee(L2014199)the Fundamental Research Funds for the Central Universities(3132014323)
基金Project(50679056) supported by the National Natural Science Foundation of ChinaProject(06-0378) supported by Program for NewCentury Excellent Talents in University+1 种基金Project(05SG25) supported by the "Dawn" Program of Shanghai Education Commission, ChinaProject(B308) supported by the Shanghai Leading Academic Discipline, China
文摘Strain rate effects on the stress-strain behavior of sand were investigated by performing special plane strain and triaxial compression tests on saturated and air-dried sand specimens. In these tests, the loading strain rate was changed many times by a factor of up to 1 000 during otherwise monotonous loading at a constant axial strain rate. Test results show that the stress jump upon a stepwise change in the strain rate decays with an increase in the irreversible strain when monotonous loading continues at the changed strain rate and the amount of stress jump is essentially proportional to the instantaneous stress. Based on the amount of these stress jumps, a parameter fl called the rate-sensitivity coefficient is introduced to represent the quantity of the observed viscous properties of sand, which equals 0.021 3 and 0.024 2 respectively for Hostun and Toyoura sands. Further analyses on the results indicate that the effect of the presence of pore water is deemed to be negligible with sand and the fl value is rather independent of loading method, wet condition and confining pressure.