The controlling algorithm was studied for the inverter-driven multi-type air conditioner using electronic expansion valve(EEV) in outdoor unit. The performance of inverter-driven air conditioner with two different uni...The controlling algorithm was studied for the inverter-driven multi-type air conditioner using electronic expansion valve(EEV) in outdoor unit. The performance of inverter-driven air conditioner with two different units was investigated by varying the outdoor ambient temperature and compressor speed. Based on the test results, the effect of EEV opening on the indoor unit exit superheat was discussed. For the specified outdoor ambient temperature scope and the EEV opening, the superheats of indoor units decrease with the outdoor ambient temperature rising. Improper distribution of refrigerant into each indoor unit will causes excessive superheat difference between two indoor units. Suggestions were then given for the controlling of the superheat.展开更多
This paper proposes a parameter determination method of distribution voltage regulators load ratio control transformers (LRT) and step voltage regulators (SVR) considering the tap change and voltage profile. The m...This paper proposes a parameter determination method of distribution voltage regulators load ratio control transformers (LRT) and step voltage regulators (SVR) considering the tap change and voltage profile. The method takes two procedures in order to simplify the optimization problem and to reduce calculation time. One is to simultaneously determine the control parameters of LRT and SVR minimizing voltage violations and voltage variations. The algorithm is based on particle swarm optimization (PSO), which is one of non-linear optimization methods by using a concept of swarm intelligence. Another is to determine the dead-band width of LRT and SVR on the basis of bi-evaluation of tap change and voltage margin. The concept of a Pareto optimal solution is used for the decision of the best dead-band width. As the results of numerical simulations using distribution network model, the validity of the proposed method has been affirmed.展开更多
文摘The controlling algorithm was studied for the inverter-driven multi-type air conditioner using electronic expansion valve(EEV) in outdoor unit. The performance of inverter-driven air conditioner with two different units was investigated by varying the outdoor ambient temperature and compressor speed. Based on the test results, the effect of EEV opening on the indoor unit exit superheat was discussed. For the specified outdoor ambient temperature scope and the EEV opening, the superheats of indoor units decrease with the outdoor ambient temperature rising. Improper distribution of refrigerant into each indoor unit will causes excessive superheat difference between two indoor units. Suggestions were then given for the controlling of the superheat.
文摘This paper proposes a parameter determination method of distribution voltage regulators load ratio control transformers (LRT) and step voltage regulators (SVR) considering the tap change and voltage profile. The method takes two procedures in order to simplify the optimization problem and to reduce calculation time. One is to simultaneously determine the control parameters of LRT and SVR minimizing voltage violations and voltage variations. The algorithm is based on particle swarm optimization (PSO), which is one of non-linear optimization methods by using a concept of swarm intelligence. Another is to determine the dead-band width of LRT and SVR on the basis of bi-evaluation of tap change and voltage margin. The concept of a Pareto optimal solution is used for the decision of the best dead-band width. As the results of numerical simulations using distribution network model, the validity of the proposed method has been affirmed.