Variations of Melanocortin Receptor 1 (MC1R) were investigated using sequencing, PCR-RFLP and PCR-SSCP, in three pig breeds, Landrace, Yorkshire, and Duroc. Five polymorphic sites were found, in which 668G→C occurr...Variations of Melanocortin Receptor 1 (MC1R) were investigated using sequencing, PCR-RFLP and PCR-SSCP, in three pig breeds, Landrace, Yorkshire, and Duroc. Five polymorphic sites were found, in which 668G→C occurred within 5' UTR, nt894insCC in coding region resulting in a premature stop at codon 56, and 1318C→T, 1554G→A, l197G→A in coding region resulting in Ala164Val, Ala243Thr, and Asp124Asn respectively. All individuals in Landrace and Yorkshire present homozygous 668GG, 1197AA, 1318CC, and 1554GG, and have CC insertions at the 894 site, whereas the individuals in Duroc present a contrast homozygous 668CC, 1197GG, 1318TT, and 1554AA, and have no CC insertions at the corresponding site. No heterozygote has been found at these mutation sites. Presumably, 668G→C, 1318C→T, and 1554G→A may be associated with the recessive red color in the Duroc breed, and nt894insCC making 1197G→A nonsense may be associated with the white color in Landrace and Yorkshire breeds.展开更多
A green-revertible albino mutant-Qiufeng M was found from the japonica rice (Oryza sativa L. ssp. japonica) Qiufeng in the field. The first three leaves of the mutant were albino with some green. The leaf color beca...A green-revertible albino mutant-Qiufeng M was found from the japonica rice (Oryza sativa L. ssp. japonica) Qiufeng in the field. The first three leaves of the mutant were albino with some green. The leaf color became pale green since the fourth leaf and the glume had the same phenomenon as the first three leaves. The measuring data of the pigment content confirmed the visually observed results. It truly had a remarkable changing process in the leaf color in Qiufeng M. Comparison of the main agronomic characters between Qiufeng and Qiufeng M indicated that the neck length and grain weight showed significant difference at the 1% level, and other characters were not different. Genetic analysis showed that the green-revertible albino trait was controlled by a single recessive nucleic gene. Using 209 recessive mutant individuals in the F2 population derived from the cross Pei'ai 64S × Qiufeng M, a gene, tentatively named gra(t), was located between the SSR markers of RM475 and RM2-22 on the long arm of chromosome 2. The genetic distance were 17.3 cM and 2.9 cM respectively.展开更多
A gene sequence coding for the precursor of Galanthus nivalis agglutinin (GNA) was modified by site-directed mutagenesis to change very low usage bias codons to higher usage bias ones for improvement of the gene expre...A gene sequence coding for the precursor of Galanthus nivalis agglutinin (GNA) was modified by site-directed mutagenesis to change very low usage bias codons to higher usage bias ones for improvement of the gene expression in transgenic tobacco (Nicotiana tabacum L.) plants. Results from Western blot analysis of some of the transgenic tobacco plants showed that the expression level of GNA in plants transformed with the modified gene GNA34m reached 0.25% of total soluble proteins, while that of the GNA34 gene transgenic plants was 0.17%. Since the GNA expression level increased, the aphid resistance of GNA34m transgenic plants were also enhanced significantly as judged by a 71.0% aphid population inhibition in insect bioassay of GNA34m transformed plants and 63.7% for the plants transformed with the natural GNA34 gene.展开更多
[Objective] This study aimed to analyze the temporal-spatial variation of Inner Mongolian grassland degradation during past three decades. [Method] The dis- tribution characteristics of grassland were described by lan...[Objective] This study aimed to analyze the temporal-spatial variation of Inner Mongolian grassland degradation during past three decades. [Method] The dis- tribution characteristics of grassland were described by land use types supervised classification with TM/ETM. Then, temporal-spatial changes of grassland coverage were quantified by the mean of maximum vegetation coverage in last 30 years. Lastly, the grassland degradation reasons were explored through statistic analysis between the grassland coverage and precipitation, temperature and grazing intensity. [Result] The grassland degradation index of Inner Mongolia was increased from 1.38 to 1.68, and the smallest was 1.28 in 2005s. Grassland degradation and improve- ment were concurrent after 1980s, but grassland degradation was the major change trend for Inner Mongolia grassland. The area of grassland degradation was enlarged from 18.08×10^4 km2 in 1980s to 22.47×10^4 km2 in 2010s on the whole and distribu- tion range was shifted from central-eastern to west in Inner Mongolia that mainly distributed on Hulun Buir and Xilin Gol grassland in 1980s and Ordos and Alax grassland in 2010s. The grassland area of degradation had a rising trend form 1980s to 1995s, then reduced to 10.8x104 km2 in 2005s, and decreased in 2010s, which mainly speared in the west of Xilin Gol grassland. [Conclusion] Inner Mongo-lian grassland degradation were become more seriously in last 30 years because that temperature, precipitation and graze intensities change, which not performance on decreasing coverage but grassland areas.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 30571326)President Foundation and De-velopment Foundation for Scientific Research of Agricultural University of Hebei.
文摘Variations of Melanocortin Receptor 1 (MC1R) were investigated using sequencing, PCR-RFLP and PCR-SSCP, in three pig breeds, Landrace, Yorkshire, and Duroc. Five polymorphic sites were found, in which 668G→C occurred within 5' UTR, nt894insCC in coding region resulting in a premature stop at codon 56, and 1318C→T, 1554G→A, l197G→A in coding region resulting in Ala164Val, Ala243Thr, and Asp124Asn respectively. All individuals in Landrace and Yorkshire present homozygous 668GG, 1197AA, 1318CC, and 1554GG, and have CC insertions at the 894 site, whereas the individuals in Duroc present a contrast homozygous 668CC, 1197GG, 1318TT, and 1554AA, and have no CC insertions at the corresponding site. No heterozygote has been found at these mutation sites. Presumably, 668G→C, 1318C→T, and 1554G→A may be associated with the recessive red color in the Duroc breed, and nt894insCC making 1197G→A nonsense may be associated with the white color in Landrace and Yorkshire breeds.
基金This work was supported by the Major Research Program on Technology of Agricultural Structure Adjustment (No. 05-01-05B)Jiangsu High Technology Program (No. BG2004301, BG2004304, and BG2005301).
文摘A green-revertible albino mutant-Qiufeng M was found from the japonica rice (Oryza sativa L. ssp. japonica) Qiufeng in the field. The first three leaves of the mutant were albino with some green. The leaf color became pale green since the fourth leaf and the glume had the same phenomenon as the first three leaves. The measuring data of the pigment content confirmed the visually observed results. It truly had a remarkable changing process in the leaf color in Qiufeng M. Comparison of the main agronomic characters between Qiufeng and Qiufeng M indicated that the neck length and grain weight showed significant difference at the 1% level, and other characters were not different. Genetic analysis showed that the green-revertible albino trait was controlled by a single recessive nucleic gene. Using 209 recessive mutant individuals in the F2 population derived from the cross Pei'ai 64S × Qiufeng M, a gene, tentatively named gra(t), was located between the SSR markers of RM475 and RM2-22 on the long arm of chromosome 2. The genetic distance were 17.3 cM and 2.9 cM respectively.
文摘A gene sequence coding for the precursor of Galanthus nivalis agglutinin (GNA) was modified by site-directed mutagenesis to change very low usage bias codons to higher usage bias ones for improvement of the gene expression in transgenic tobacco (Nicotiana tabacum L.) plants. Results from Western blot analysis of some of the transgenic tobacco plants showed that the expression level of GNA in plants transformed with the modified gene GNA34m reached 0.25% of total soluble proteins, while that of the GNA34 gene transgenic plants was 0.17%. Since the GNA expression level increased, the aphid resistance of GNA34m transgenic plants were also enhanced significantly as judged by a 71.0% aphid population inhibition in insect bioassay of GNA34m transformed plants and 63.7% for the plants transformed with the natural GNA34 gene.
基金Supported by National Program on Key Basic Research Project of China (2011CB403206)National Key Technology Research and Development Program during the 12~(th) Five-year Plan Period of China(2012BAC19B04)~~
文摘[Objective] This study aimed to analyze the temporal-spatial variation of Inner Mongolian grassland degradation during past three decades. [Method] The dis- tribution characteristics of grassland were described by land use types supervised classification with TM/ETM. Then, temporal-spatial changes of grassland coverage were quantified by the mean of maximum vegetation coverage in last 30 years. Lastly, the grassland degradation reasons were explored through statistic analysis between the grassland coverage and precipitation, temperature and grazing intensity. [Result] The grassland degradation index of Inner Mongolia was increased from 1.38 to 1.68, and the smallest was 1.28 in 2005s. Grassland degradation and improve- ment were concurrent after 1980s, but grassland degradation was the major change trend for Inner Mongolia grassland. The area of grassland degradation was enlarged from 18.08×10^4 km2 in 1980s to 22.47×10^4 km2 in 2010s on the whole and distribu- tion range was shifted from central-eastern to west in Inner Mongolia that mainly distributed on Hulun Buir and Xilin Gol grassland in 1980s and Ordos and Alax grassland in 2010s. The grassland area of degradation had a rising trend form 1980s to 1995s, then reduced to 10.8x104 km2 in 2005s, and decreased in 2010s, which mainly speared in the west of Xilin Gol grassland. [Conclusion] Inner Mongo-lian grassland degradation were become more seriously in last 30 years because that temperature, precipitation and graze intensities change, which not performance on decreasing coverage but grassland areas.