期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
变尺度特征提取在数控机床状态识别中的应用 被引量:2
1
作者 黄强 刘鑫 张晓 《机床与液压》 北大核心 2010年第10期83-84,8,共3页
正确识别数控机床从正常到故障之间的演化过程,对掌握机床运行状态、保证加工精度具有重要意义。提出采用变尺度小波包特征提取方法以提高状态识别的准确性,并以数控车床主轴轴承磨损研究为例,将此方法与传统方法进行了对比分析。仿真... 正确识别数控机床从正常到故障之间的演化过程,对掌握机床运行状态、保证加工精度具有重要意义。提出采用变尺度小波包特征提取方法以提高状态识别的准确性,并以数控车床主轴轴承磨损研究为例,将此方法与传统方法进行了对比分析。仿真和实验研究表明:变尺度小波包特征提取方法能有针对性地提取蕴含更多状态信息的振动信号特征用于状态识别,在192组测试样本中,变尺度特征提取方法的识别准确率达到98.44%,较传统方法有明显提高。 展开更多
关键词 数控机床 状态识别 变尺度特征提取
下载PDF
变尺度特征提取与HSMM模型在柴油机状态识别中的应用
2
作者 黄强 张晓 丁志华 《小型内燃机与摩托车》 CAS 北大核心 2009年第6期80-82,共3页
正确识别机械设备从正常到故障之间的演化过程,对掌握设备运行状态和预防故障发生具有重要意义。本文以柴油发电机组的气门漏气状态研究为例,建立了基于变尺度特征提取与隐式半马尔科夫模型(HSMM)的状态识别方法。变尺度小波包特征提取... 正确识别机械设备从正常到故障之间的演化过程,对掌握设备运行状态和预防故障发生具有重要意义。本文以柴油发电机组的气门漏气状态研究为例,建立了基于变尺度特征提取与隐式半马尔科夫模型(HSMM)的状态识别方法。变尺度小波包特征提取方法能有针对性地提取蕴含更多状态信息的振动信号特征,隐式半马尔科夫模型是一个强大的状态识别与故障预测工具,二者的有效结合能在较大程度上提高设备状态识别准确率。 展开更多
关键词 柴油发电机组 状态识别 变尺度特征提取 隐式半马尔科夫模型
下载PDF
多聚焦图像离焦模糊区域的SIFT特征提取
3
作者 夏晓华 赵倩 +2 位作者 向华涛 秦绪芳 岳鹏举 《光学精密工程》 EI CAS CSCD 北大核心 2023年第24期3630-3639,共10页
常规的尺度不变特征变换(SIFT)图像特征提取方法难以提取多聚焦图像离焦模糊区域的特征,使得图像间存在局部、少量的公共特征,导致多聚焦图像配准精度差,严重影响后续图像融合和三维重建质量。在分析图像离焦模糊区域特征提取不确定性... 常规的尺度不变特征变换(SIFT)图像特征提取方法难以提取多聚焦图像离焦模糊区域的特征,使得图像间存在局部、少量的公共特征,导致多聚焦图像配准精度差,严重影响后续图像融合和三维重建质量。在分析图像离焦模糊区域特征提取不确定性的基础上,提出了一种多聚焦图像离焦模糊区域的SIFT特征提取方法。首先提取多聚焦图像聚焦清晰区域的SIFT特征,再利用光流跟踪提取对应离焦模糊区域的SIFT特征,避免了在离焦模糊区域直接提取SIFT特征的不确定性。实验结果表明:提出的方法在离焦模糊区域具有良好的SIFT特征提取能力和提取精度,能实现多聚焦图像SIFT特征匹配数量显著增长,SIFT特征提取的误差为0.03~0.39 pixels,优于现有方法的0.21~1.71 pixels。降低了离焦模糊区域SIFT特征提取的不确定性,为多聚焦图像精确配准奠定了基础。 展开更多
关键词 多聚焦图像 尺度特征换(SIFT)特征提取 离焦模糊区域 光流跟踪
下载PDF
一种适用于图像拼接的DSIFT算法研究 被引量:2
4
作者 周远 周玉生 +1 位作者 刘权 杨新宇 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第9期84-90,共7页
针对SIFT算法在分辨率很低的模糊边缘平滑图像中提取的特征点数量过少,而且没有考虑特征点的分布情况、计算开销较大的问题,提出了一种离散尺度不变特征提取DSIFT(Discrete SIFT)算法。该算法在空间极值检测阶段引入一个滑动窗口,在窗... 针对SIFT算法在分辨率很低的模糊边缘平滑图像中提取的特征点数量过少,而且没有考虑特征点的分布情况、计算开销较大的问题,提出了一种离散尺度不变特征提取DSIFT(Discrete SIFT)算法。该算法在空间极值检测阶段引入一个滑动窗口,在窗口内对极值点的检测进行非极大值抑制,使得特征点的分布相对均匀,运算速度更快,并且保持了尺度、旋转、仿射等不变性。在特征提取前添加了降采样操作,在计算单应矩阵前添加位置信息还原的步骤,在查找匹配点的过程中引入K-D树,以及在特征点的筛选和单应矩阵的估计上采用RANSAC算法,都降低了图像配准各个阶段的时间开销。最后,通过实验验证,DSFIT算法相对SIFT算法具有更加均匀的特征点分布,保持了较高的鲁棒性,同时,在保证一定图像拼接质量的前提下极大地降低了图像配准各个阶段的时间开销。 展开更多
关键词 图像拼接 尺度特征提取算法 图像配准 图像融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部