期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于子区域变尺度高斯拟合的木材表面缺陷识别
被引量:
16
1
作者
苑玮琦
李绍丽
李德健
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2016年第4期879-886,共8页
为了提高木材的使用效率、避免由于木材缺陷造成生产故障,根据木材缺陷类型对其分类处理是一种有效的手段,但木材缺陷复杂多样且具有诸多相似性使得类别区分成为难点。针对以上问题本文提出了一种基于子区域变尺度高斯拟合模型的缺陷识...
为了提高木材的使用效率、避免由于木材缺陷造成生产故障,根据木材缺陷类型对其分类处理是一种有效的手段,但木材缺陷复杂多样且具有诸多相似性使得类别区分成为难点。针对以上问题本文提出了一种基于子区域变尺度高斯拟合模型的缺陷识别方法。首先建立变尺度高斯拟合基本模型,然后将缺陷纹理分成若干子区域,提取各分区的高斯拟合特征并进行融合;将高斯融合特征及圆度和边缘直线度这两个几何特征输入到建立好的BP神经网络模型中进行训练,根据优化训练的网络模型识别缺陷。该方法对自建的SUT-W图库中雪糕棒图像上人工标定的裂缝、矿物线、矿物块和黑节子的准确识别率分别为91.72%、92.77%、92.67%和92.80%,与其他典型纹理检测方法相比,4种缺陷准确识别率最高分别提高9.38%、6.69%、13.55%和10.22%,说明本文方法能够有效地将以上4种缺陷分辨开,具有一定的实际应用价值。
展开更多
关键词
子区域
变尺度高斯拟合
木材表面缺陷
几何特征
BP神经网络
下载PDF
职称材料
题名
基于子区域变尺度高斯拟合的木材表面缺陷识别
被引量:
16
1
作者
苑玮琦
李绍丽
李德健
机构
沈阳工业大学信息科学与工程学院
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2016年第4期879-886,共8页
基金
国家自然科学基金(61271365)项目资助
文摘
为了提高木材的使用效率、避免由于木材缺陷造成生产故障,根据木材缺陷类型对其分类处理是一种有效的手段,但木材缺陷复杂多样且具有诸多相似性使得类别区分成为难点。针对以上问题本文提出了一种基于子区域变尺度高斯拟合模型的缺陷识别方法。首先建立变尺度高斯拟合基本模型,然后将缺陷纹理分成若干子区域,提取各分区的高斯拟合特征并进行融合;将高斯融合特征及圆度和边缘直线度这两个几何特征输入到建立好的BP神经网络模型中进行训练,根据优化训练的网络模型识别缺陷。该方法对自建的SUT-W图库中雪糕棒图像上人工标定的裂缝、矿物线、矿物块和黑节子的准确识别率分别为91.72%、92.77%、92.67%和92.80%,与其他典型纹理检测方法相比,4种缺陷准确识别率最高分别提高9.38%、6.69%、13.55%和10.22%,说明本文方法能够有效地将以上4种缺陷分辨开,具有一定的实际应用价值。
关键词
子区域
变尺度高斯拟合
木材表面缺陷
几何特征
BP神经网络
Keywords
sub-region
zoom Gaussian fitting
wood surface defect
geometrical feature
BP neural network
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
TH79 [机械工程—精密仪器及机械]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于子区域变尺度高斯拟合的木材表面缺陷识别
苑玮琦
李绍丽
李德健
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2016
16
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部