期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多尺度残差网络的域适应轴承故障识别方法
1
作者 赵志宏 孙美玲 窦广鉴 《机电工程》 CAS 北大核心 2023年第12期1898-1906,共9页
不同工况下的故障轴承原始振动信号存在分布差异较大的问题,在进行故障诊断时也会存在特征提取不充分,从而导致故障诊断模型诊断精度较低的问题,为此,提出了一种基于多尺度残差网络的对数相关对齐(logCORAL-MsRN)的域适应轴承故障识别方... 不同工况下的故障轴承原始振动信号存在分布差异较大的问题,在进行故障诊断时也会存在特征提取不充分,从而导致故障诊断模型诊断精度较低的问题,为此,提出了一种基于多尺度残差网络的对数相关对齐(logCORAL-MsRN)的域适应轴承故障识别方法(模型)。首先,对轴承原始振动信号进行了预处理,将其转换为二维灰度图像;然后,使用多尺度残差块和空洞卷积对残差神经网络ResNet50的网络结构进行了改进,设计了一种多尺度残差网络(MsRN),以充分提取轴承的故障特征,避免深层网络结构的梯度消失问题;提出了一种对数相关对齐(logCORAL)域适应方法,更好地进行了域间分布对齐;最后,采用交叉熵损失和logCORAL损失作为目标优化函数,对上述模型(方法)进行了训练,在美国凯斯西储大学(CWRU)公开数据集上进行了变工况下的对比实验和消融实验。研究结果表明:logCORAL-MsRN方法在变工况条件下的轴承故障诊断的平均准确率高达96.53%,并且优于其他对比方法,即特征提取网络MsRN可以提取出不同尺度的、更加丰富的轴承故障信息,域适应方法logCORAL可以有效地对齐源域和目标域之间的特征分布,验证了该方法的有效性及优越性。 展开更多
关键词 多尺度残差网络对数相关对齐 域适应 深度学习 迁移学习 变工况对比实验 消融实验
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部