期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于变异字典的中国工尺谱即兴演奏研究
1
作者 李荣锋 李学明 柳杨 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2019年第3期314-319,共6页
今人解读工尺谱的最大难点在于处理不确定的节奏型,即工尺谱只规定了节拍的起始位置,而未分配音符的具体时值.本文的研究对象是昆曲、京剧以及古乐器演奏中的工尺谱,重点研究工尺谱符号,包括音高、节拍、歌词及其读音的音乐学和语言学... 今人解读工尺谱的最大难点在于处理不确定的节奏型,即工尺谱只规定了节拍的起始位置,而未分配音符的具体时值.本文的研究对象是昆曲、京剧以及古乐器演奏中的工尺谱,重点研究工尺谱符号,包括音高、节拍、歌词及其读音的音乐学和语言学的量化语义.本文针对演唱者的即兴演唱问题,利用数据驱动的方法,自动生成基于每一拍实际演唱音符的变异字典.希望能够通过本文的研究,将千百年来中国人在使用工尺谱中凝结的智慧,以数据的形式保存下来,并通过使用统计模型与计算机技术,更好地传承、传播和发扬中国传统文化. 展开更多
关键词 工尺谱 即兴演奏 变异字典
下载PDF
Impulsive component extraction using shift-invariant dictionary learning and its application to gear-box bearing early fault diagnosis 被引量:3
2
作者 ZHANG Zhao-heng DING Jian-ming +1 位作者 WU Chao LIN Jian-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第4期824-838,共15页
The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract ... The impulsive components induced by bearing faults are key features for assessing gear-box bearing faults.However,because of heavy background noise and the interferences of other vibrations,it is difficult to extract these impulsive components caused by faults,particularly early faults,from the measured vibration signals.To capture the high-level structure of impulsive components embedded in measured vibration signals,a dictionary learning method called shift-invariant K-means singular value decomposition(SI-K-SVD)dictionary learning is used to detect the early faults of gear-box bearings.Although SI-K-SVD is more flexible and adaptable than existing methods,the improper selection of two SI-K-SVD-related parameters,namely,the number of iterations and the pattern lengths,has an adverse influence on fault detection performance.Therefore,the sparsity of the envelope spectrum(SES)and the kurtosis of the envelope spectrum(KES)are used to select these two key parameters,respectively.SI-K-SVD with the two selected optimal parameter values,referred to as optimal parameter SI-K-SVD(OP-SI-K-SVD),is proposed to detect gear-box bearing faults.The proposed method is verified by both simulations and an experiment.Compared to the state-of-the-art methods,namely,empirical model decomposition,wavelet transform and K-SVD,OP-SI-K-SVD has better performance in diagnosing the early faults of a gear-box bearing. 展开更多
关键词 gear-box bearing fault diagnosis shift-invariant K-means singular value decomposition impulsive component extraction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部