The microstructure evolution and mechanical properties of a T8-aged Al-Cu-Li alloy with increased pre-deformation(0-15%) were investigated,revealing the microstructure-strength relationship and the intrinsic strengthe...The microstructure evolution and mechanical properties of a T8-aged Al-Cu-Li alloy with increased pre-deformation(0-15%) were investigated,revealing the microstructure-strength relationship and the intrinsic strengthening mechanism.The results show that increasing the pre-deformation levels remarkably improves the strength of the alloy but deteriorates its ductility.Dislocations introduced by pre-deformation effectively suppress the formation of Guinier-Preston(GP) zones and provide more nucleation sites for T1 precipitates.This leads to more intensive and finer T1 precipitates in the samples with higher pre-deformation levels.Simultaneously,the enhanced precipitation of T1 precipitates and inhibited formation of GP zones cause the decreases in number and sizes of θ′ precipitates.The quantitative descriptions of the strength contributions from different strengthening mechanisms reveal that strengthening contributions from T1 and θ′ precipitates decrease with increasing pre-deformation.The reduced diameters of T1 precipitates are primarily responsible for their weakened strengthening effects.Therefore,the improved strength of the T8-aged Al-Cu-Li alloy is mainly attributed to the stronger strain hardening from the increased pre-deformation levels.展开更多
Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined ...Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined and then a significant increase in ductility can be achieved.The lateral pressure exerted by CFS would increase the compressive strength of the concrete,resulting in higher load bearing capacity.This paper proposes the stress strain curve of this kind of hybrid specimen,which agrees well with the test results.Based on the stress strain relationship and the assumptions proposed in this paper,a computer program was developed to analyze HSC columns,confined by CFS,which were subjected to axial compression and biaxial bending.The results shown in this paper indicate that the ductility of HSC column is significantly improved and the strength is also increased by some degree.展开更多
A Fe/Al clad tube was prepared by explosive welding.Then the bonding characteristic of the interface was investigated by compression,flattening and compression-shear test.The test results exhibit that the clad tubes p...A Fe/Al clad tube was prepared by explosive welding.Then the bonding characteristic of the interface was investigated by compression,flattening and compression-shear test.The test results exhibit that the clad tubes possessing good bonding interface have higher shear strength than that of pure aluminum and can bear both axial and radial deformation.The original interface between aluminum layer and ferrite layer was observed by scanning electron microscopy(SEM).The results show that the clad tubes with good bonding properties possess the interface in wave and straight shape.The Fe/Al clad tube was used to manufacture the T-shape by hydro-bulging.It is found that the good-bonding interface of the Fe/Al clad tube plays a dominant role in the formation of the T-shape.展开更多
Strengthening of aluminium alloys 7xxx through the imposition of severe plastic deformation supplemented by ageing treatments is a challenge due to the limited workability of these alloys in cold deformation regimes.T...Strengthening of aluminium alloys 7xxx through the imposition of severe plastic deformation supplemented by ageing treatments is a challenge due to the limited workability of these alloys in cold deformation regimes.This study aims to comprehensively investigate the strengthening of aluminium alloy 7005 through the imposition of severe plastic deformation supplemented by two different ageing treatments:pre-deformation artificial ageing or postdeformation natural ageing.For this purpose,microstructure evolutions of the alloy processed through mentioned procedures were studied using X-ray diffraction and scanning electron microscopy while the alloy strengthening was evaluated using Vickers hardness measurement.Results show that a superlative strengthening is obtained through the imposition of severe plastic deformation supplemented by post-deformation natural ageing.For instance,the yield strength of the alloy increases to more than 400 MPa,about one-third greater than the counterpart amount after the usual T6 treatment.This superlative strength mainly occurs due to refinement of grains,an increase of dislocation density and an increase of volume fraction of the precipitates that appeared during natural ageing.Considering the applied models,it is inferred that the increase of volume fraction of precipitates that appeared during natural ageing has a determinative role in the strengthening of the alloy.展开更多
The effect of pre-deformation followed by or together with artificial aging on the mechanical properties as strength and ductility of an AA6060 aluminium alloy was studied. AA6060 was initially cast, homogenized and e...The effect of pre-deformation followed by or together with artificial aging on the mechanical properties as strength and ductility of an AA6060 aluminium alloy was studied. AA6060 was initially cast, homogenized and extruded according to standard industrial practice. The extruded material was then subjected to a solution heat treatment and subsequently artificial aging after (sequential mode) and during (simultaneous mode) various combinations of deformation (0-10%) and heat treatments. The aging behaviour and mechanical properties were characterized in terms of Vickers hardness and tensile testing. It is found that precipitation kinetics and associated mechanical response, in terms of hardness and tensile properties are strongly affected by pre-deformations. In terms of aging behaviour, kinetics is accelerated and the peak strength generally increases. Comparing sequential mode and simultaneous mode, the latter seems to give overall better mechanical properties and after considerably shorter aging times. The results of the two modes of pre-deformation are compared and discussed in view of differences in processing conditions and microstructure characteristics.展开更多
A binary Al-7Mg alloy was processed by equal channel angular pressing (ECAP) at room temperature via route Bc, combined with intermediate annealing. After 6 passes, a high hardness of HV218 is achieved. Transmission...A binary Al-7Mg alloy was processed by equal channel angular pressing (ECAP) at room temperature via route Bc, combined with intermediate annealing. After 6 passes, a high hardness of HV218 is achieved. Transmission electron microscopy (TEM) observations demonstrate that ECAP leads to a significant grain refinement and ultrafine grains down to 100-200 nm are developed after 5 or 6 passes. X-ray diffraction (XRD) analysis indicates that the major part of Mg atoms are in solid solution in the deformed material, and the possible strengthening effect of Mg solute atom clusters or precipitates is neglected. The high hardness of the 6 pass-treated materials comes mainly from grain boundary strengthening, which contributes about 41% to the total strength, while dislocations and Mg solid solution contribute about 24% and 35% to the remaining strength, respectively. Also, the thermal stability of this severely deformed material was investigated by hardness measurements. The material is relatively stable when annealed at a temperature lower than 250 ℃, while annealing at 300 ℃ leads to a rapid softening of the material.展开更多
The failure of slope is a progressive process, and the whole sliding surface is caused by the gradual softening of soil strength of the potential sliding surface. From this viewpoint, a local dynamic strength reductio...The failure of slope is a progressive process, and the whole sliding surface is caused by the gradual softening of soil strength of the potential sliding surface. From this viewpoint, a local dynamic strength reduction method is proposed to capture the progressive failure of slope. This method can calculate the warning deformation of landslide in this study. Only strength parameters of the yielded zone of landslide will be reduced by using the method. Through continuous local reduction of the strength parameters of the yielded zone, the potential sliding surface developed gradually and evolved to breakthrough finally. The result shows that the proposed method can simulate the progressive failure of slope truly. The yielded zone and deformation of landslide obtained by the method are smaller than those of overall strength reduction method. The warning deformation of landslide can be obtained by using the local dynamic strength reduction method which is based on the softening characteristics of the sliding surface.展开更多
As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation...As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation stations were established to monitor movement and deformation in one super-large working face. Based on field measurements, the surface movement and deformation characteristics were obtained, including angle parameters, subsidence prediction parameters, etc. Besides, the angle and subsidence prediction parameters in similar mining areas are summarized; the mechanism of surface movement and deformation was analyzed with the combination of key stratum theory, mining and geological conditions. The research also indicates that compared with conventional working faces, uniform subsidence area of the subsidence trough in the windy and sandy region is larger, the trough margins are relative steep and deformation values present convergence at the margins, the extent of the trough shrink towards the goaf and the influence time of mining activities lasts shorter; the overlying rock movement and breaking characteristics presents regional particularity in the study area, while the single key stratum, thin bedrock and thick sand that can rapidly propagate movement and deformation are the deep factors, contributing to it.展开更多
The 7xxx series alloys are heat treatable wrought aluminium alloys based on the Al-Zn-Mg(-Cu) system. They are widely used in high-performance structural aerospace and transportation applications. Apart from composi...The 7xxx series alloys are heat treatable wrought aluminium alloys based on the Al-Zn-Mg(-Cu) system. They are widely used in high-performance structural aerospace and transportation applications. Apart from compositional, casting and thermo-mechanical processing effects, the balance of properties is also significantly influenced by the way in which the materials are heat-treated. This paper describes the effects of homogenisation, solution treatment, quenching and ageing treatments on the evolution of the microstructure and properties of some important medium to high-strength 7xxx alloys. With a focus on recent work at Monash University, where the whole processing route from homogenisation to final ageing has been studied for thick plate products, it is reported how microstructural features such as dispersoids, coarse constituent particles, fine-scale precipitates, grain structure and grain boundary characteristics can be controlled by heat treatment to achieve improved microstructure-property combinations. In particular, the paper presents methods for dissolving unwanted coarse constituent particles by controlled high- temperature treatments, quench sensitivity evaluations based on a systematic study of continuous cooling precipitation behaviour, and ageing investigations of one-, two- and three-step ageing treatments using experimental and modelling approaches, in each case, the effects on both the microstructure and the resulting properties are discussed.展开更多
The effect of cold rolling reduction(50%-90%)on the grain structures of solutionized 1445 Al-Li alloy sheet at525-575 ℃ was investigated through electron backscatter diffraction(EBSD).Although the solutionization tem...The effect of cold rolling reduction(50%-90%)on the grain structures of solutionized 1445 Al-Li alloy sheet at525-575 ℃ was investigated through electron backscatter diffraction(EBSD).Although the solutionization temperature is elevated to 575 ℃,the sheet is not completely recrystallized.The main recrystallization model is subgrain coalescence and growth,and the non-recrystallization is due to the formed nano-sized Al3(Sc,Zr)dispersoids,which pin the grain boundaries,subgrain boundaries and dislocations.With increasing the cold rolling reduction,the fraction and size of the recrystallized grains in the sheet solutionized at525 ℃ are decreased,but the fraction of the subgrains is increased,leading to a decrease in the fraction of the deformed structures.Meanwhile,the number fraction of high-angle boundaries(HABs)is increased.Due to the decreased fraction of the deformed structures and increased fraction of the HABs,the T8-aged 1445 Al-Li alloy sheet displays a decrease trend in the strength and heterogeneity with increasing the cold rolling reduction.At higher solutionization temperature of 575 ℃,the fraction of the recrystallized grains and their size are obviously increased.展开更多
Diffusion bonding is one of the most important techniques for composite materials, while bonding temperature, holding time,and rolling reduction are the key parameters that affect the bonding strength of sandwich plat...Diffusion bonding is one of the most important techniques for composite materials, while bonding temperature, holding time,and rolling reduction are the key parameters that affect the bonding strength of sandwich plates. To study the effect of plastic deformation on the bonding strength, laboratory experiments were carried on a Gleeble Thermal Simulator to imitate the diffusion-rolling bonding under different reductions for steel sandwich plates. The bonding strength and interlayer film thickness were measured, and the element diffusion was analyzed using line scanning. The relationship between the bonding strength and “diffused interlayer” thickness was investigated. It has been found that the bonding strength increases with reduction, whereas the interlayer film thickness decreases gradually as the reduction increases. The diffusion under plastic deformation is obviously enhanced in comparison with that of nil reduction. The mechanism of plastic deformation effect on the diffusion bonding and related models have been discussed.展开更多
The deformation behaviors of extruded-rolled(ER)AZ31 Mg alloys with different rolling reduction and heat treatment were investigated.The results show that the accumulation of rolling reduction increases the density of...The deformation behaviors of extruded-rolled(ER)AZ31 Mg alloys with different rolling reduction and heat treatment were investigated.The results show that the accumulation of rolling reduction increases the density of twins,and refines the grain structures,which are in accordance with the enhanced strength and degraded plasticity.Tensile strength and plasticity of the alloy depend mainly on rolling reduction,while heat treatment temperature plays a more important role than heat treatment time at the same rolling reduction.With the increase of rolling reduction,the plasticity becomes more sensitive than strength on heat treatment. Recrystallization of extruded-rolled alloys will occur easily with deformation increasing,which is induced by addition of distortion energy.展开更多
Based on the Canadian Standards Association(CSA) criterion,experiments on 30 pull-out specimens were conducted to study the bond strength of deformed GFRP rebars with 8 different surface configurations.Each rebar was ...Based on the Canadian Standards Association(CSA) criterion,experiments on 30 pull-out specimens were conducted to study the bond strength of deformed GFRP rebars with 8 different surface configurations.Each rebar was embedded in a 150 mm concrete cube,and the test embedded length was four times of the rebar diameter.Relationship between the mode of failure,the average bond strength and the average bond strength-slip for each rebar was analyzed.Results show that the failure mode of all specimens is the shearing off or desquamation of ribs,no splitting cracks appear on the cube specimens.The bond stress of deformed GFRP rebars mainly depends on the mechanical interaction between the ribs of the bar and the surrounding concrete,and the bond strength of deformed GFRP rebars is improved obviously.The optimal rib spacing is less than 2.5 times of the rebar diameter,and the rib height is more than 3% of the rebar diameter.展开更多
A step-by-step load was utilized to mimic the load history of the backfill column in the in-situ curing process.The inner damage of the specimen during curing and uniaxial compressive testing was monitored by electric...A step-by-step load was utilized to mimic the load history of the backfill column in the in-situ curing process.The inner damage of the specimen during curing and uniaxial compressive testing was monitored by electrical resistivity and ultrasonic equipment.Results show that:1)Uniaxial compressive strength(UCS)and elastic modulus(EM)of the samples curing under pressure are higher than those of the control samples without pressure,ranging in ratio from 0.5%to 20.2%and 7.1%to 52.3%,respectively,and are influenced by the initial loading age(ILA)and stress strength ratio(SSR).The SSR during curing should not exceed 80%.2)The earlier the ILA is,the higher the total strain becomes.The higher the SSR applies,the larger the total strain gets.The creep strain increases with the increase of SSR and can be described by Burger’s viscoelastic creep model.When SSR is less than 80%,the earlier the ILA is,the smaller the creep strain becomes after the last step-loading.3)The stability of the early age backfill column under pressure can be monitored based on the change of ultrasonic pulse velocity(UPV)and electrical resistivity.展开更多
Thermo-plasticity of homogenized 7050 aluminum ingot was investigated by instantaneous tensile tests conducted at different temperatures. The results show that, with the increase of testing temperatures, the strength ...Thermo-plasticity of homogenized 7050 aluminum ingot was investigated by instantaneous tensile tests conducted at different temperatures. The results show that, with the increase of testing temperatures, the strength decreases, and the plasticity increases firstly and then decreases in homogenized 7050 ingot. When the studied alloy is deformed between 380℃ and 420℃, the deformation resistance is lower and plasticity is better. And the actual heating temperature for ingot before hot extrusion should be controlled between 360 ~C and 400 ~C. At low tensile temperatures, the deformation structure is mainly composed of dislocation substructure. With the increase of testing temperatures, transgranular fracture transforms into intergranular fracture progressively during deformation. At high tensile temperatures, the grain boundaries are weakened, deformation is concentrated at the grain boundaries and the re-orientation of equilibrium phases at grain boundaries appears.展开更多
Controlling the thermal deformation is a crucial index for the design of the satellite antenna. To calculate and measure the satellite antenna’s thermal deformation is also an important step for the design of satelli...Controlling the thermal deformation is a crucial index for the design of the satellite antenna. To calculate and measure the satellite antenna’s thermal deformation is also an important step for the design of satellite antenna. Based on the foundation of equivalent assumption, the thermal deformation of the parabolic satellite antenna was analyzed by the finite element method for different design project. The best design project that had the minimum of the thermal deformation could be obtained through changing the lay-angle, lay-layers and lay-thickness of each layer. Results show the asymmetry structure has the minimum of thermal deformation. This paper may provide useful information for the further investigation on the coupling of thermal-stress structure.展开更多
The micro orientation theological behavior of AZ61 Mg alloy during net-shape forming of tensile specimens via close-die pressing of extruded preformed and the effect of the press deformation rate on the microstructure...The micro orientation theological behavior of AZ61 Mg alloy during net-shape forming of tensile specimens via close-die pressing of extruded preformed and the effect of the press deformation rate on the microstructure characteristics were characterized with electron back-scattering diffraction(EBSD)orientation imaging microscopy and metallography.The results indicate that the intensity distribution of basal{0001}<1010>texture on the cross-section of the extruded perform is uniform and parallel to the extrusion direction.Subjected to pressing in extrusion direction,deformation shear stress leads to grain rotation and basal texture {0001}<1010>deviation from the extrusion direction,spreading in the direction perpendicular to pressing direction.The texture intensity increases with the press deformation rate and reaches its peak value at 50%,which is considerably lower than the value reached in extrusion deformation.Then,the texture intensity decreases with the press deformation rate reversely.展开更多
Based on the microscopic elasticity theory and microscopic diffusion equation, the precipitation progress of the binary alloys including coherent strain energy was studied. The results show that coherent strain has ob...Based on the microscopic elasticity theory and microscopic diffusion equation, the precipitation progress of the binary alloys including coherent strain energy was studied. The results show that coherent strain has obvious effect on the coherent two-phase morphology and precipitation mechanism. With the increase of coherent strain energy, the particles shape changes from the randomly distributed equiaxed particels to elliptical precipitate shapes,their arrangement orientation increases; in the late stage of precipitation, the particle arrangement presents obvious directionality along the [10]and[01]directions, and the precipitation mechanism of alloy changes from typical spinodal decomposition mechanism to the mixture process which possesses the characteristics of both non-classical nucleation growth and spinodal decomposition mechanisms.展开更多
基金supported by the Natural Science Foundation of Hunan Province, China (No. 2023JJ30678)。
文摘The microstructure evolution and mechanical properties of a T8-aged Al-Cu-Li alloy with increased pre-deformation(0-15%) were investigated,revealing the microstructure-strength relationship and the intrinsic strengthening mechanism.The results show that increasing the pre-deformation levels remarkably improves the strength of the alloy but deteriorates its ductility.Dislocations introduced by pre-deformation effectively suppress the formation of Guinier-Preston(GP) zones and provide more nucleation sites for T1 precipitates.This leads to more intensive and finer T1 precipitates in the samples with higher pre-deformation levels.Simultaneously,the enhanced precipitation of T1 precipitates and inhibited formation of GP zones cause the decreases in number and sizes of θ′ precipitates.The quantitative descriptions of the strength contributions from different strengthening mechanisms reveal that strengthening contributions from T1 and θ′ precipitates decrease with increasing pre-deformation.The reduced diameters of T1 precipitates are primarily responsible for their weakened strengthening effects.Therefore,the improved strength of the T8-aged Al-Cu-Li alloy is mainly attributed to the stronger strain hardening from the increased pre-deformation levels.
文摘Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined and then a significant increase in ductility can be achieved.The lateral pressure exerted by CFS would increase the compressive strength of the concrete,resulting in higher load bearing capacity.This paper proposes the stress strain curve of this kind of hybrid specimen,which agrees well with the test results.Based on the stress strain relationship and the assumptions proposed in this paper,a computer program was developed to analyze HSC columns,confined by CFS,which were subjected to axial compression and biaxial bending.The results shown in this paper indicate that the ductility of HSC column is significantly improved and the strength is also increased by some degree.
基金Project(BA2006067)supported by Achievement Transitional Foundation of Jiangsu Province,China
文摘A Fe/Al clad tube was prepared by explosive welding.Then the bonding characteristic of the interface was investigated by compression,flattening and compression-shear test.The test results exhibit that the clad tubes possessing good bonding interface have higher shear strength than that of pure aluminum and can bear both axial and radial deformation.The original interface between aluminum layer and ferrite layer was observed by scanning electron microscopy(SEM).The results show that the clad tubes with good bonding properties possess the interface in wave and straight shape.The Fe/Al clad tube was used to manufacture the T-shape by hydro-bulging.It is found that the good-bonding interface of the Fe/Al clad tube plays a dominant role in the formation of the T-shape.
基金the research board of Ferdowsi University of Mashhad(FUM)for the financial support and the provision of research facilities used in this work through grant No.3/41681.
文摘Strengthening of aluminium alloys 7xxx through the imposition of severe plastic deformation supplemented by ageing treatments is a challenge due to the limited workability of these alloys in cold deformation regimes.This study aims to comprehensively investigate the strengthening of aluminium alloy 7005 through the imposition of severe plastic deformation supplemented by two different ageing treatments:pre-deformation artificial ageing or postdeformation natural ageing.For this purpose,microstructure evolutions of the alloy processed through mentioned procedures were studied using X-ray diffraction and scanning electron microscopy while the alloy strengthening was evaluated using Vickers hardness measurement.Results show that a superlative strengthening is obtained through the imposition of severe plastic deformation supplemented by post-deformation natural ageing.For instance,the yield strength of the alloy increases to more than 400 MPa,about one-third greater than the counterpart amount after the usual T6 treatment.This superlative strength mainly occurs due to refinement of grains,an increase of dislocation density and an increase of volume fraction of the precipitates that appeared during natural ageing.Considering the applied models,it is inferred that the increase of volume fraction of precipitates that appeared during natural ageing has a determinative role in the strengthening of the alloy.
基金Project (176816/I40) supported by the Research Council of Norway
文摘The effect of pre-deformation followed by or together with artificial aging on the mechanical properties as strength and ductility of an AA6060 aluminium alloy was studied. AA6060 was initially cast, homogenized and extruded according to standard industrial practice. The extruded material was then subjected to a solution heat treatment and subsequently artificial aging after (sequential mode) and during (simultaneous mode) various combinations of deformation (0-10%) and heat treatments. The aging behaviour and mechanical properties were characterized in terms of Vickers hardness and tensile testing. It is found that precipitation kinetics and associated mechanical response, in terms of hardness and tensile properties are strongly affected by pre-deformations. In terms of aging behaviour, kinetics is accelerated and the peak strength generally increases. Comparing sequential mode and simultaneous mode, the latter seems to give overall better mechanical properties and after considerably shorter aging times. The results of the two modes of pre-deformation are compared and discussed in view of differences in processing conditions and microstructure characteristics.
基金Financial support from the SUP Project ‘Improvement’ (Pnr. 192450) financed by the Research Council of Norway
文摘A binary Al-7Mg alloy was processed by equal channel angular pressing (ECAP) at room temperature via route Bc, combined with intermediate annealing. After 6 passes, a high hardness of HV218 is achieved. Transmission electron microscopy (TEM) observations demonstrate that ECAP leads to a significant grain refinement and ultrafine grains down to 100-200 nm are developed after 5 or 6 passes. X-ray diffraction (XRD) analysis indicates that the major part of Mg atoms are in solid solution in the deformed material, and the possible strengthening effect of Mg solute atom clusters or precipitates is neglected. The high hardness of the 6 pass-treated materials comes mainly from grain boundary strengthening, which contributes about 41% to the total strength, while dislocations and Mg solid solution contribute about 24% and 35% to the remaining strength, respectively. Also, the thermal stability of this severely deformed material was investigated by hardness measurements. The material is relatively stable when annealed at a temperature lower than 250 ℃, while annealing at 300 ℃ leads to a rapid softening of the material.
基金supported by the National Natural Science Foundation of China(Grant Nos.41002110,41272330and41130745)the research fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Grant No.SKLGP2012Z003)supported by the funding of Science and Technology Office of Sichuan Province(Grant No.2012JY0110)
文摘The failure of slope is a progressive process, and the whole sliding surface is caused by the gradual softening of soil strength of the potential sliding surface. From this viewpoint, a local dynamic strength reduction method is proposed to capture the progressive failure of slope. This method can calculate the warning deformation of landslide in this study. Only strength parameters of the yielded zone of landslide will be reduced by using the method. Through continuous local reduction of the strength parameters of the yielded zone, the potential sliding surface developed gradually and evolved to breakthrough finally. The result shows that the proposed method can simulate the progressive failure of slope truly. The yielded zone and deformation of landslide obtained by the method are smaller than those of overall strength reduction method. The warning deformation of landslide can be obtained by using the local dynamic strength reduction method which is based on the softening characteristics of the sliding surface.
基金Financial supports for this work, are provided by the National Natural Science Foundation of China (NSFC) & Shenhua Group Corporation Limited key support project of the coal joint fund (U1361203) and NSFC under Grant No. 41501562. Thanks are also due to some participants for rendering assistant cooperation during studies.
文摘As China's energy strategy moving westward, the surface movement and deformation characteristics due to high-intensive coal mining in the windy and sandy region become a research hotspot. Surface movement observation stations were established to monitor movement and deformation in one super-large working face. Based on field measurements, the surface movement and deformation characteristics were obtained, including angle parameters, subsidence prediction parameters, etc. Besides, the angle and subsidence prediction parameters in similar mining areas are summarized; the mechanism of surface movement and deformation was analyzed with the combination of key stratum theory, mining and geological conditions. The research also indicates that compared with conventional working faces, uniform subsidence area of the subsidence trough in the windy and sandy region is larger, the trough margins are relative steep and deformation values present convergence at the margins, the extent of the trough shrink towards the goaf and the influence time of mining activities lasts shorter; the overlying rock movement and breaking characteristics presents regional particularity in the study area, while the single key stratum, thin bedrock and thick sand that can rapidly propagate movement and deformation are the deep factors, contributing to it.
基金The Aluminium Corporation of China Ltd.(Chalco)for supporting aspects of this work financiallyproviding AA7150 materials as part of the Australia-China International Centre for Light Alloy Research(ICLAR)+1 种基金Monash University for developing the retrogression and reageing Matlab model (as part of the PhD project of Dr Adrian GROSVENOR)The ARC Centre of Excellence for Design in Light Metals and its Directors (first Prof Barry MUDDLE and then Prof Xin-hua WU) for supporting
文摘The 7xxx series alloys are heat treatable wrought aluminium alloys based on the Al-Zn-Mg(-Cu) system. They are widely used in high-performance structural aerospace and transportation applications. Apart from compositional, casting and thermo-mechanical processing effects, the balance of properties is also significantly influenced by the way in which the materials are heat-treated. This paper describes the effects of homogenisation, solution treatment, quenching and ageing treatments on the evolution of the microstructure and properties of some important medium to high-strength 7xxx alloys. With a focus on recent work at Monash University, where the whole processing route from homogenisation to final ageing has been studied for thick plate products, it is reported how microstructural features such as dispersoids, coarse constituent particles, fine-scale precipitates, grain structure and grain boundary characteristics can be controlled by heat treatment to achieve improved microstructure-property combinations. In particular, the paper presents methods for dissolving unwanted coarse constituent particles by controlled high- temperature treatments, quench sensitivity evaluations based on a systematic study of continuous cooling precipitation behaviour, and ageing investigations of one-, two- and three-step ageing treatments using experimental and modelling approaches, in each case, the effects on both the microstructure and the resulting properties are discussed.
文摘The effect of cold rolling reduction(50%-90%)on the grain structures of solutionized 1445 Al-Li alloy sheet at525-575 ℃ was investigated through electron backscatter diffraction(EBSD).Although the solutionization temperature is elevated to 575 ℃,the sheet is not completely recrystallized.The main recrystallization model is subgrain coalescence and growth,and the non-recrystallization is due to the formed nano-sized Al3(Sc,Zr)dispersoids,which pin the grain boundaries,subgrain boundaries and dislocations.With increasing the cold rolling reduction,the fraction and size of the recrystallized grains in the sheet solutionized at525 ℃ are decreased,but the fraction of the subgrains is increased,leading to a decrease in the fraction of the deformed structures.Meanwhile,the number fraction of high-angle boundaries(HABs)is increased.Due to the decreased fraction of the deformed structures and increased fraction of the HABs,the T8-aged 1445 Al-Li alloy sheet displays a decrease trend in the strength and heterogeneity with increasing the cold rolling reduction.At higher solutionization temperature of 575 ℃,the fraction of the recrystallized grains and their size are obviously increased.
基金This work was financially supported by the National High-Tech Research and Development Program of China (No.2002AA334070)
文摘Diffusion bonding is one of the most important techniques for composite materials, while bonding temperature, holding time,and rolling reduction are the key parameters that affect the bonding strength of sandwich plates. To study the effect of plastic deformation on the bonding strength, laboratory experiments were carried on a Gleeble Thermal Simulator to imitate the diffusion-rolling bonding under different reductions for steel sandwich plates. The bonding strength and interlayer film thickness were measured, and the element diffusion was analyzed using line scanning. The relationship between the bonding strength and “diffused interlayer” thickness was investigated. It has been found that the bonding strength increases with reduction, whereas the interlayer film thickness decreases gradually as the reduction increases. The diffusion under plastic deformation is obviously enhanced in comparison with that of nil reduction. The mechanism of plastic deformation effect on the diffusion bonding and related models have been discussed.
基金Project(50431020)supported by the National Natural Science Foundation of ChinaProject(2007CB613704)supported by the National Basic Research Program of China
文摘The deformation behaviors of extruded-rolled(ER)AZ31 Mg alloys with different rolling reduction and heat treatment were investigated.The results show that the accumulation of rolling reduction increases the density of twins,and refines the grain structures,which are in accordance with the enhanced strength and degraded plasticity.Tensile strength and plasticity of the alloy depend mainly on rolling reduction,while heat treatment temperature plays a more important role than heat treatment time at the same rolling reduction.With the increase of rolling reduction,the plasticity becomes more sensitive than strength on heat treatment. Recrystallization of extruded-rolled alloys will occur easily with deformation increasing,which is induced by addition of distortion energy.
基金Sponsored by the Western Communication Construction and Science & Technological Project(Grant No.200431882021)the National Science Fundfor Distinguished Young Scholars (Grant No.50525823)
文摘Based on the Canadian Standards Association(CSA) criterion,experiments on 30 pull-out specimens were conducted to study the bond strength of deformed GFRP rebars with 8 different surface configurations.Each rebar was embedded in a 150 mm concrete cube,and the test embedded length was four times of the rebar diameter.Relationship between the mode of failure,the average bond strength and the average bond strength-slip for each rebar was analyzed.Results show that the failure mode of all specimens is the shearing off or desquamation of ribs,no splitting cracks appear on the cube specimens.The bond stress of deformed GFRP rebars mainly depends on the mechanical interaction between the ribs of the bar and the surrounding concrete,and the bond strength of deformed GFRP rebars is improved obviously.The optimal rib spacing is less than 2.5 times of the rebar diameter,and the rib height is more than 3% of the rebar diameter.
基金Project(51974192)supported by the National Natural Science Foundation of ChinaProject(201803D31044)supported by the Program for Key Research Project of Shanxi Province in the Field of Social Development,ChinaProject(201801D121092)supported by the Applied Basic Research Project of Shanxi Province,China。
文摘A step-by-step load was utilized to mimic the load history of the backfill column in the in-situ curing process.The inner damage of the specimen during curing and uniaxial compressive testing was monitored by electrical resistivity and ultrasonic equipment.Results show that:1)Uniaxial compressive strength(UCS)and elastic modulus(EM)of the samples curing under pressure are higher than those of the control samples without pressure,ranging in ratio from 0.5%to 20.2%and 7.1%to 52.3%,respectively,and are influenced by the initial loading age(ILA)and stress strength ratio(SSR).The SSR during curing should not exceed 80%.2)The earlier the ILA is,the higher the total strain becomes.The higher the SSR applies,the larger the total strain gets.The creep strain increases with the increase of SSR and can be described by Burger’s viscoelastic creep model.When SSR is less than 80%,the earlier the ILA is,the smaller the creep strain becomes after the last step-loading.3)The stability of the early age backfill column under pressure can be monitored based on the change of ultrasonic pulse velocity(UPV)and electrical resistivity.
基金Project(JPPT-115-2-948) supported by the National Civilian Matched Program of China
文摘Thermo-plasticity of homogenized 7050 aluminum ingot was investigated by instantaneous tensile tests conducted at different temperatures. The results show that, with the increase of testing temperatures, the strength decreases, and the plasticity increases firstly and then decreases in homogenized 7050 ingot. When the studied alloy is deformed between 380℃ and 420℃, the deformation resistance is lower and plasticity is better. And the actual heating temperature for ingot before hot extrusion should be controlled between 360 ~C and 400 ~C. At low tensile temperatures, the deformation structure is mainly composed of dislocation substructure. With the increase of testing temperatures, transgranular fracture transforms into intergranular fracture progressively during deformation. At high tensile temperatures, the grain boundaries are weakened, deformation is concentrated at the grain boundaries and the re-orientation of equilibrium phases at grain boundaries appears.
文摘Controlling the thermal deformation is a crucial index for the design of the satellite antenna. To calculate and measure the satellite antenna’s thermal deformation is also an important step for the design of satellite antenna. Based on the foundation of equivalent assumption, the thermal deformation of the parabolic satellite antenna was analyzed by the finite element method for different design project. The best design project that had the minimum of the thermal deformation could be obtained through changing the lay-angle, lay-layers and lay-thickness of each layer. Results show the asymmetry structure has the minimum of thermal deformation. This paper may provide useful information for the further investigation on the coupling of thermal-stress structure.
基金Project(CSTC2007AA4008)supported by the Scientific and Technological Project in Chongqing of China
文摘The micro orientation theological behavior of AZ61 Mg alloy during net-shape forming of tensile specimens via close-die pressing of extruded preformed and the effect of the press deformation rate on the microstructure characteristics were characterized with electron back-scattering diffraction(EBSD)orientation imaging microscopy and metallography.The results indicate that the intensity distribution of basal{0001}<1010>texture on the cross-section of the extruded perform is uniform and parallel to the extrusion direction.Subjected to pressing in extrusion direction,deformation shear stress leads to grain rotation and basal texture {0001}<1010>deviation from the extrusion direction,spreading in the direction perpendicular to pressing direction.The texture intensity increases with the press deformation rate and reaches its peak value at 50%,which is considerably lower than the value reached in extrusion deformation.Then,the texture intensity decreases with the press deformation rate reversely.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50071046)the National Hi-Tech Research and Development Program ofChina (Grant No.2002AA331051).
文摘Based on the microscopic elasticity theory and microscopic diffusion equation, the precipitation progress of the binary alloys including coherent strain energy was studied. The results show that coherent strain has obvious effect on the coherent two-phase morphology and precipitation mechanism. With the increase of coherent strain energy, the particles shape changes from the randomly distributed equiaxed particels to elliptical precipitate shapes,their arrangement orientation increases; in the late stage of precipitation, the particle arrangement presents obvious directionality along the [10]and[01]directions, and the precipitation mechanism of alloy changes from typical spinodal decomposition mechanism to the mixture process which possesses the characteristics of both non-classical nucleation growth and spinodal decomposition mechanisms.