Deep rock mass possesses some unusual properties due to high earth stress,which further result in new problems that have not been well understood and explained up to date.In order to investigate the deformation mechan...Deep rock mass possesses some unusual properties due to high earth stress,which further result in new problems that have not been well understood and explained up to date.In order to investigate the deformation mechanism,the complete deformation process of deep rock mass,with a great emphasis on local shear deformation stage,was analyzed in detail.The quasi continuous shear deformation of the deep rock mass is described by a combination of smooth functions:the averaged distribution of the original deformation field,and the local discontinuities along the slip lines.Hence,an elasto-plastic model is established for the shear deformation process,in which the rotational displacement is taken into account as well as the translational component.Numerical analysis method was developed for case study.Deformation process of a tunnel under high earth stress was investigated for verification.展开更多
Based on the deformation characteristics of the roadways driven along goaf in fully mechanized top coal caving faces, the author considers that it is the key to ensure the stability of surrounding rocks of roadway dri...Based on the deformation characteristics of the roadways driven along goaf in fully mechanized top coal caving faces, the author considers that it is the key to ensure the stability of surrounding rocks of roadway driven along goaf to control the deformation during the period affected by mining. Considering the characteristics of the roadway layout in fully mechanized top coal caving faces, a technical scheme of destressing is put forward and the destressing effect is analyzed by using the software of Universal Distinct Element Code 3 0(UDEC 3 0).展开更多
To study the grouting reinforcement mechanism in jointed rock slope, first, the theoretical deduction was done to calculate the critical length of slipping if the slope angle is larger than that of joint inclination; ...To study the grouting reinforcement mechanism in jointed rock slope, first, the theoretical deduction was done to calculate the critical length of slipping if the slope angle is larger than that of joint inclination; Second, the numerical calculation model was founded by FLAG^3D, so as to find the stress and deformation responses of rock mass in the state before and after grouting, the analysis results show that the range between the boundary of critical slipping block and the joint plane that passes the slope toe is the effective grouting area (EGA). After excavation, large deformation occurs along the joint plane. After grouting, the displacements of rock particles become uniform and continuous, and large deformations along the joint plane are controlled; the dynamic displacement can re- flect the deformation response of slope during excavation in the state before and after grouting, as well as the shear location of potential slip plane. After grouting, the dynamic displacement of each monitoring point reaches the peak value with very few time steps, which indicate that the parameters of the joint plane, such as strength and stiffness, are improved; the stress field becomes uniform. Tensile area reduces gradually; whole stability of the slope and its ability to resist tensile and shear stress are improved greatly.展开更多
Line heating process is a very complex phenomenon as a variety of factors affects the amount of residual deformations. Numerical thermal and mechanical analysis of line heating for prediction of residual deformation i...Line heating process is a very complex phenomenon as a variety of factors affects the amount of residual deformations. Numerical thermal and mechanical analysis of line heating for prediction of residual deformation is time consuming. In the present work dimensional analysis has been presented to obtain a new relationship between input parameters and resulting residual deformations during line heating process. The temperature distribution and residual deformations for 6 mm, 8 mm, 10 mm and 12 mm thick steel plates were numerically estimated and compared with experimental and published results. Extensive data generated through a validated FE model were used to find co-relationship between the input parameters and the resulting residual deformation by multiple regression analysis. The results obtained from the deformation equations developed in this work compared well with those of the FE analysis with a drop in the computation time in the order of 100 (computational time required for FE analysis is around 7 200 second to 9 000 seconds and where the time required for getting the residual deformation by developed equations is only 60 to 90 seconds).展开更多
The overbroken rock mass of gob areas is made up of broken and accumulated rock blocks compressed to some extent by the overlying strata. The beating pressure of the gob can directly affect the safety of mining fields...The overbroken rock mass of gob areas is made up of broken and accumulated rock blocks compressed to some extent by the overlying strata. The beating pressure of the gob can directly affect the safety of mining fields, formarion of road retained along the next goaf and seepage of water and methane through the gob. In this paper, the software RFPA'2000 is used to construct numerical models. Especially the Euler method of control volume is proposed to solve the simulation difficulty arising from plastically finite deformations. The results show that three characteristic regions occurred in the gob area: (1) a naturally accumulated region, 0-10 m away from unbroken surrounding rock walls, where the beating pressure is nearly zero; (2) an overcompacted region, 10-20 m away from unbroken walls, where the beating pressure results in the maximum value of the gob area; (3) a stable compaction region, more than 20 m away from unbroken walls and occupying absolutely most of the gob area, where the beating pressures show basically no differences. Such a characteristic can exolain the easy-seeoaged “O”-ring phenomena around mining fields very well.展开更多
A two-dimensional numerical mine strata in the vicinity of seam 349 in model of a large (1 000 m× 200 m) section of Iongwall panel 802 in part B of the Murcki Colliery in the Upper Silesian Coal Basin, Poland, ...A two-dimensional numerical mine strata in the vicinity of seam 349 in model of a large (1 000 m× 200 m) section of Iongwall panel 802 in part B of the Murcki Colliery in the Upper Silesian Coal Basin, Poland, was built using the Universal Distinct Element Code UDEC. Longwall extraction of seam 349 with roof caving was simulated in the model over a length of 450 m. Mining-induced changes in displacements, strains and stresses in the mine strata were investigated. Under the assumptions that (1) methane-bearing strata occur 15.6 m beneath seam 349 and include seam 350 and the strata lying beneath, and (2) the methane reservoir pressure is equal to 2 MPa, a fully coupled mechanical hydraulic analysis was performed in which joint conductivity was dependent on the mechanical deformation and, conversely, the mechanical behavior of rock masses was affected by joint fluid pressure. It was shown that migration of methane from coal seams lying beneath the mined seam is possible under conditions where the floor strata deform to a great extent, undergo separation, fracture and break into blocks.展开更多
To study the mechanical properties of the film/substrate structure, the finite element code ABAQUS v6.9-1 is adopted to simulate the tensile mechanical behavior of the nanoscale thin film bonded to a substrate. The bi...To study the mechanical properties of the film/substrate structure, the finite element code ABAQUS v6.9-1 is adopted to simulate the tensile mechanical behavior of the nanoscale thin film bonded to a substrate. The bifurcation phenomenon of the structure under uniaxial tension is found: the single-neck deformation, the multiple-neck deforma- tion and the uniform deformation. The substrate and the film are regarded as power-hardening materials obeying the J2 deformation theory. Firstly, the influence of material hardening match on tensile bifurcation mode is analyzed under perfectly well-bonded interface condition. Then, the effects of interfacial stiffness and other superficial defects sur- rounding the imperfection on bifurcation mode are investigated. It is concluded that under the well-bonded interface condition, if the stress of the substrate is larger than the film, the film will uniformly deform with the substrate; if the stress of the substrate is smaller than the film, the film will form a single neck, except the case that a weakly-hardening film is bonded to a steeply-hardening substrate when multiple necks can be formed. With the decrease of interracial stiffness, the uniform deformation mode can transform into the multiple-neck deformation mode, and further transform into the single-neck deformation mode. And other defects surrounding the imperfection can influence the wavelength of deformation and neck number.展开更多
Standard finite element approaches are still ineffective in handling extreme material deformation, such as cases of large deformations and moving discontinuities due to severe mesh distortion. Among meshfree methods d...Standard finite element approaches are still ineffective in handling extreme material deformation, such as cases of large deformations and moving discontinuities due to severe mesh distortion. Among meshfree methods developed to overcome the ineffectiveness, Reproducing Kernel Particle Method (RKPM) has demonstrated its great suitability for structural analysis.This paper presents applications of RKPM in elasto-plastic problems after a review of meshfree methods and an introduction to RKPM. A slope stability problem in geotechnical engineering is analyzed as an illustrative case. The corresponding numerical simulations are carried out on an SGI Onyx3900 supercomputer. Comparison of the RKPM and the FEM under identical conditions showed that the RKPM is more suitable for problems where there exists extremely large strain such as in the case of slope sliding.展开更多
A brief introduction is made for the Numerical Manifold Method and its analysing process in rock mechanics. Some aspects of the manifold method are improved in implementing process according to the practice of excavat...A brief introduction is made for the Numerical Manifold Method and its analysing process in rock mechanics. Some aspects of the manifold method are improved in implementing process according to the practice of excavating underground openings. Corresponding formulas are given and a computer program of the Numerical Manifold Method has been completed in this paper.展开更多
In this paper, a discontinuous numerical model, namely SDDARF3D(three-dimensional spherical discontinuous deformation analysis for rock failure), is proposed for simulating the whole process of rock failure. Firstly, ...In this paper, a discontinuous numerical model, namely SDDARF3D(three-dimensional spherical discontinuous deformation analysis for rock failure), is proposed for simulating the whole process of rock failure. Firstly, within the framework of the classical discontinuous deformation analysis(DDA) method, the formulation of three-dimensional spherical DDA(3D SDDA) is deduced; secondly, a bonding and cracking algorithm is constructed and the SDDARF3 D model is proposed; thirdly, corresponding VC++ calculation code is developed and some verification examples are calculated. The simulated results can intuitively reproduce the failure phenomena of rock mass, indicating that the proposed SDDARF3 D numerical model is correct and effective.展开更多
A discontinuous deformation and displacement(DDD) analysis method is proposed for modelling the rock failure process. This method combines the rock failure process analysis(RFPA) method(based on finite element method)...A discontinuous deformation and displacement(DDD) analysis method is proposed for modelling the rock failure process. This method combines the rock failure process analysis(RFPA) method(based on finite element method) and discontinuous deformation analysis(DDA) method. RFPA is used to simulate crack initiation, propagation and coalescence processes of rock during the small deformation state. The DDA method is used to simulate the movement of blocks created by the multiple cracks modelled by the RFPA. The newly developed DDD method is particularly suitable for modelling both crack propagation and block movement during the rock failure process because of the natural and convenient coupling of continuous and discontinuous deformation analyses. The proposed method has been used to simulate crack initiation, propagation and coalescence within a slope as well as the block movement during the landslide process. Numerical modelling results indicate that the proposed DDD method can automatically simulate crack propagation and block movement during the rock failure process without degrading accuracy.展开更多
The three-dimensional discontinuous deformation analysis(3D-DDA) is a promising numerical method for both static and dynamic analyses of rock systems. Lacking mature software, its popularity is far behind its ability....The three-dimensional discontinuous deformation analysis(3D-DDA) is a promising numerical method for both static and dynamic analyses of rock systems. Lacking mature software, its popularity is far behind its ability. To address this problem, this paper presents a new software architecture from a software engineering viewpoint. Based on 3D-DDA characteristics, the implementation of the proposed architecture has the following merits. Firstly, the software architecture separates data, computing, visualization, and signal control into individual modules. Secondly, data storage and parallel access are fully considered for different conditions. Thirdly, an open computing framework is provided which supports most numerical computing methods; common tools for equation solving and parallel computing are provided for further development. Fourthly, efficient visualization functions are provided by integrating a variety of visualization algorithms. A user-friendly graphical user interface is designed to improve the user experience. Finally, through a set of examples, the software is verified against both analytical solutions and the original code by Dr. Shi Gen Hua.展开更多
基金Project(50825403) supported by the National Science Fund for Distinguished Young ScholarsProject(2010CB732003) supported by the National Key Basic Research Program of ChinaProject(51021001) supported by the Science Fund for Creative Research Group of the National Natural Science Foundation of China
文摘Deep rock mass possesses some unusual properties due to high earth stress,which further result in new problems that have not been well understood and explained up to date.In order to investigate the deformation mechanism,the complete deformation process of deep rock mass,with a great emphasis on local shear deformation stage,was analyzed in detail.The quasi continuous shear deformation of the deep rock mass is described by a combination of smooth functions:the averaged distribution of the original deformation field,and the local discontinuities along the slip lines.Hence,an elasto-plastic model is established for the shear deformation process,in which the rotational displacement is taken into account as well as the translational component.Numerical analysis method was developed for case study.Deformation process of a tunnel under high earth stress was investigated for verification.
文摘Based on the deformation characteristics of the roadways driven along goaf in fully mechanized top coal caving faces, the author considers that it is the key to ensure the stability of surrounding rocks of roadway driven along goaf to control the deformation during the period affected by mining. Considering the characteristics of the roadway layout in fully mechanized top coal caving faces, a technical scheme of destressing is put forward and the destressing effect is analyzed by using the software of Universal Distinct Element Code 3 0(UDEC 3 0).
基金Supported by the National Natural Science Foundation of China (50099620, 40804027)
文摘To study the grouting reinforcement mechanism in jointed rock slope, first, the theoretical deduction was done to calculate the critical length of slipping if the slope angle is larger than that of joint inclination; Second, the numerical calculation model was founded by FLAG^3D, so as to find the stress and deformation responses of rock mass in the state before and after grouting, the analysis results show that the range between the boundary of critical slipping block and the joint plane that passes the slope toe is the effective grouting area (EGA). After excavation, large deformation occurs along the joint plane. After grouting, the displacements of rock particles become uniform and continuous, and large deformations along the joint plane are controlled; the dynamic displacement can re- flect the deformation response of slope during excavation in the state before and after grouting, as well as the shear location of potential slip plane. After grouting, the dynamic displacement of each monitoring point reaches the peak value with very few time steps, which indicate that the parameters of the joint plane, such as strength and stiffness, are improved; the stress field becomes uniform. Tensile area reduces gradually; whole stability of the slope and its ability to resist tensile and shear stress are improved greatly.
文摘Line heating process is a very complex phenomenon as a variety of factors affects the amount of residual deformations. Numerical thermal and mechanical analysis of line heating for prediction of residual deformation is time consuming. In the present work dimensional analysis has been presented to obtain a new relationship between input parameters and resulting residual deformations during line heating process. The temperature distribution and residual deformations for 6 mm, 8 mm, 10 mm and 12 mm thick steel plates were numerically estimated and compared with experimental and published results. Extensive data generated through a validated FE model were used to find co-relationship between the input parameters and the resulting residual deformation by multiple regression analysis. The results obtained from the deformation equations developed in this work compared well with those of the FE analysis with a drop in the computation time in the order of 100 (computational time required for FE analysis is around 7 200 second to 9 000 seconds and where the time required for getting the residual deformation by developed equations is only 60 to 90 seconds).
基金Projects 2005CB221502 supported by the Vital Foundational 973 Program of China, 50225414 by the National Outstanding Youth Foundation,20040350222 by China Postdoctoral Science FoundationBK 2004033 by Jiangsu Natural Science Foundation
文摘The overbroken rock mass of gob areas is made up of broken and accumulated rock blocks compressed to some extent by the overlying strata. The beating pressure of the gob can directly affect the safety of mining fields, formarion of road retained along the next goaf and seepage of water and methane through the gob. In this paper, the software RFPA'2000 is used to construct numerical models. Especially the Euler method of control volume is proposed to solve the simulation difficulty arising from plastically finite deformations. The results show that three characteristic regions occurred in the gob area: (1) a naturally accumulated region, 0-10 m away from unbroken surrounding rock walls, where the beating pressure is nearly zero; (2) an overcompacted region, 10-20 m away from unbroken walls, where the beating pressure results in the maximum value of the gob area; (3) a stable compaction region, more than 20 m away from unbroken walls and occupying absolutely most of the gob area, where the beating pressures show basically no differences. Such a characteristic can exolain the easy-seeoaged “O”-ring phenomena around mining fields very well.
文摘A two-dimensional numerical mine strata in the vicinity of seam 349 in model of a large (1 000 m× 200 m) section of Iongwall panel 802 in part B of the Murcki Colliery in the Upper Silesian Coal Basin, Poland, was built using the Universal Distinct Element Code UDEC. Longwall extraction of seam 349 with roof caving was simulated in the model over a length of 450 m. Mining-induced changes in displacements, strains and stresses in the mine strata were investigated. Under the assumptions that (1) methane-bearing strata occur 15.6 m beneath seam 349 and include seam 350 and the strata lying beneath, and (2) the methane reservoir pressure is equal to 2 MPa, a fully coupled mechanical hydraulic analysis was performed in which joint conductivity was dependent on the mechanical deformation and, conversely, the mechanical behavior of rock masses was affected by joint fluid pressure. It was shown that migration of methane from coal seams lying beneath the mined seam is possible under conditions where the floor strata deform to a great extent, undergo separation, fracture and break into blocks.
基金Supported by National Natural Science Foundation of China (No. 11072174)National Basic Research Program of China ("973"Program)(No. 2012CB937500)
文摘To study the mechanical properties of the film/substrate structure, the finite element code ABAQUS v6.9-1 is adopted to simulate the tensile mechanical behavior of the nanoscale thin film bonded to a substrate. The bifurcation phenomenon of the structure under uniaxial tension is found: the single-neck deformation, the multiple-neck deforma- tion and the uniform deformation. The substrate and the film are regarded as power-hardening materials obeying the J2 deformation theory. Firstly, the influence of material hardening match on tensile bifurcation mode is analyzed under perfectly well-bonded interface condition. Then, the effects of interfacial stiffness and other superficial defects sur- rounding the imperfection on bifurcation mode are investigated. It is concluded that under the well-bonded interface condition, if the stress of the substrate is larger than the film, the film will uniformly deform with the substrate; if the stress of the substrate is smaller than the film, the film will form a single neck, except the case that a weakly-hardening film is bonded to a steeply-hardening substrate when multiple necks can be formed. With the decrease of interracial stiffness, the uniform deformation mode can transform into the multiple-neck deformation mode, and further transform into the single-neck deformation mode. And other defects surrounding the imperfection can influence the wavelength of deformation and neck number.
文摘Standard finite element approaches are still ineffective in handling extreme material deformation, such as cases of large deformations and moving discontinuities due to severe mesh distortion. Among meshfree methods developed to overcome the ineffectiveness, Reproducing Kernel Particle Method (RKPM) has demonstrated its great suitability for structural analysis.This paper presents applications of RKPM in elasto-plastic problems after a review of meshfree methods and an introduction to RKPM. A slope stability problem in geotechnical engineering is analyzed as an illustrative case. The corresponding numerical simulations are carried out on an SGI Onyx3900 supercomputer. Comparison of the RKPM and the FEM under identical conditions showed that the RKPM is more suitable for problems where there exists extremely large strain such as in the case of slope sliding.
文摘A brief introduction is made for the Numerical Manifold Method and its analysing process in rock mechanics. Some aspects of the manifold method are improved in implementing process according to the practice of excavating underground openings. Corresponding formulas are given and a computer program of the Numerical Manifold Method has been completed in this paper.
基金supported by the Key Research Program of the Chinese Academy of Sciences(Grant No.KZZD-EW-05-03)the National Basic Research Program of China("973"Project)(Grant No.2011CB710602)the National Natural Science Foundation of China(Grant Nos.51139004&40972201)
文摘In this paper, a discontinuous numerical model, namely SDDARF3D(three-dimensional spherical discontinuous deformation analysis for rock failure), is proposed for simulating the whole process of rock failure. Firstly, within the framework of the classical discontinuous deformation analysis(DDA) method, the formulation of three-dimensional spherical DDA(3D SDDA) is deduced; secondly, a bonding and cracking algorithm is constructed and the SDDARF3 D model is proposed; thirdly, corresponding VC++ calculation code is developed and some verification examples are calculated. The simulated results can intuitively reproduce the failure phenomena of rock mass, indicating that the proposed SDDARF3 D numerical model is correct and effective.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2014CB047100)the National Natural Science Foundation of China(Grant Nos.51421064,51474046 & 51174039)the Fundamental Research Funds for the Central Universities(Grant No.DUT14LK21)
文摘A discontinuous deformation and displacement(DDD) analysis method is proposed for modelling the rock failure process. This method combines the rock failure process analysis(RFPA) method(based on finite element method) and discontinuous deformation analysis(DDA) method. RFPA is used to simulate crack initiation, propagation and coalescence processes of rock during the small deformation state. The DDA method is used to simulate the movement of blocks created by the multiple cracks modelled by the RFPA. The newly developed DDD method is particularly suitable for modelling both crack propagation and block movement during the rock failure process because of the natural and convenient coupling of continuous and discontinuous deformation analyses. The proposed method has been used to simulate crack initiation, propagation and coalescence within a slope as well as the block movement during the landslide process. Numerical modelling results indicate that the proposed DDD method can automatically simulate crack propagation and block movement during the rock failure process without degrading accuracy.
基金supported by the National Natural Science Foundation of China(Grant No.61471338)the Knowledge Innovation Program of the Chinese Academy of Sciences,Youth Innovation Promotion Association CAS,President Fund of UCASCRSRI Open Research Program(Grant No.CKWV2015217/KY)
文摘The three-dimensional discontinuous deformation analysis(3D-DDA) is a promising numerical method for both static and dynamic analyses of rock systems. Lacking mature software, its popularity is far behind its ability. To address this problem, this paper presents a new software architecture from a software engineering viewpoint. Based on 3D-DDA characteristics, the implementation of the proposed architecture has the following merits. Firstly, the software architecture separates data, computing, visualization, and signal control into individual modules. Secondly, data storage and parallel access are fully considered for different conditions. Thirdly, an open computing framework is provided which supports most numerical computing methods; common tools for equation solving and parallel computing are provided for further development. Fourthly, efficient visualization functions are provided by integrating a variety of visualization algorithms. A user-friendly graphical user interface is designed to improve the user experience. Finally, through a set of examples, the software is verified against both analytical solutions and the original code by Dr. Shi Gen Hua.