期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
裂隙岩体宏观力学参数研究 被引量:36
1
作者 陈卫忠 杨建平 +1 位作者 邹喜德 周春宏 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2008年第8期1569-1575,共7页
裂隙岩体的变形模量及强度特性是工程界关注的焦点,其关键是岩体变形模量及强度的尺寸效应和表征单元尺寸(REV)。根据锦屏二级水电站大理岩裂隙统计分布规律及岩块和结构面力学特性试验成果,确定岩块和结构面的本构模型,建立考虑无厚度... 裂隙岩体的变形模量及强度特性是工程界关注的焦点,其关键是岩体变形模量及强度的尺寸效应和表征单元尺寸(REV)。根据锦屏二级水电站大理岩裂隙统计分布规律及岩块和结构面力学特性试验成果,确定岩块和结构面的本构模型,建立考虑无厚度裂隙面力学响应的分析模型。研究不同尺寸、不同统计窗裂隙岩体的力学响应特征,并重点研究裂隙岩体变形模量和单轴抗压强度的尺寸效应、REV特征以及各向异性特征。该研究方法为裂隙岩体的宏观力学参数取值提供参考,研究成果也为锦屏二级水电站工程岩体参数取值提供了依据。 展开更多
关键词 岩石力学 裂隙岩体 变形模量:强度 尺寸效应 各向异性
下载PDF
Slope analysis based on local strength reduction method and variable-modulus elasto-plastic model 被引量:4
2
作者 杨光华 钟志辉 +3 位作者 傅旭东 张玉成 温勇 张明飞 《Journal of Central South University》 SCIE EI CAS 2014年第5期2041-2050,共10页
Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).How... Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method. 展开更多
关键词 slope stability local strength reduction method variable-modulus elasto-plastic model in-situ test
下载PDF
Effects of curing under step-by-step load on mechanical and deformation properties of cemented gangue backfill column 被引量:9
3
作者 GUO Yu-xia RAN Hong-yu +3 位作者 FENG Guo-rui DU Xian-jie QI Ting-ye WANG Ze-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第11期3417-3435,共19页
A step-by-step load was utilized to mimic the load history of the backfill column in the in-situ curing process.The inner damage of the specimen during curing and uniaxial compressive testing was monitored by electric... A step-by-step load was utilized to mimic the load history of the backfill column in the in-situ curing process.The inner damage of the specimen during curing and uniaxial compressive testing was monitored by electrical resistivity and ultrasonic equipment.Results show that:1)Uniaxial compressive strength(UCS)and elastic modulus(EM)of the samples curing under pressure are higher than those of the control samples without pressure,ranging in ratio from 0.5%to 20.2%and 7.1%to 52.3%,respectively,and are influenced by the initial loading age(ILA)and stress strength ratio(SSR).The SSR during curing should not exceed 80%.2)The earlier the ILA is,the higher the total strain becomes.The higher the SSR applies,the larger the total strain gets.The creep strain increases with the increase of SSR and can be described by Burger’s viscoelastic creep model.When SSR is less than 80%,the earlier the ILA is,the smaller the creep strain becomes after the last step-loading.3)The stability of the early age backfill column under pressure can be monitored based on the change of ultrasonic pulse velocity(UPV)and electrical resistivity. 展开更多
关键词 cemented gangue backfill column curing under step-by-step load compressive strength elastic modulus deformation electrical resistivity
下载PDF
Prediction of representative deformation modulus of longwall panel roof rock strata using Mamdani fuzzy system 被引量:7
4
作者 Mohammad Rezaei Mostafa Asadizadeh +1 位作者 Abbas Majdi Mohammad Farouq Hossaini 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第1期23-30,共8页
Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression a... Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression analysis (MVRA) were developed to predict deformation modulus based on data obtained from dilatometer tests carried out in Bakhtiary dam site and additional data collected from longwall coal mines. Models inputs were considered to be rock quality designation, overburden height, weathering, unconfined compressive strength, bedding inclination to core axis, joint roughness coefficient and fill thickness. To control the models performance, calculating indices such as root mean square error (RMSE), variance account for (VAF) and determination coefficient (R^2) were used. The MFS results show the significant prediction accuracy along with high performance compared to MVRA results. Finally, the sensitivity analysis of MFS results shows that the most and the least effective parameters on deformation modulus are weatherin~ and overburden height, respectively. 展开更多
关键词 Deformation modulusDilatometer testMamdani fuzzy systemMultivariable regression analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部