A series of triaxial laboratory experiments are performed on thick-walled hollow cylindrical samples of boom clay.The aim of this testing program is to better understand the anisotropic deformation during the excavati...A series of triaxial laboratory experiments are performed on thick-walled hollow cylindrical samples of boom clay.The aim of this testing program is to better understand the anisotropic deformation during the excavation.The testing conditions are similar to those to be experienced by host rocks around disposal galleries for radioactive waste.X-ray computed tomography is performed at different steps for each test with the samples remaining inside the loading cell.Initial analysis of the tomography images allows of the observation of the deformation of the central hole.In addition,particles manual tracking and 3D volumetric digital image correlation processing methods are considered being used to analyze the particles displacements and the boundary deformation of the sample quantitatively.An unsymmetrical damaged zone is induced around the hole,with a reverse deformation trend being found at the boundary after unloading,which indicates that the significant anisotropic deformation of boom clay can be induced by mechanical unloading.展开更多
基金supported by Fundamental Research Funds for the Central Universities (No.FRF-TP-14-033A1)TIMODAZ project as part of the sixth EURATOM framework programme for nuclear research and training activities (2002–2006)The Department of Diagnostic and Interventional Radiology of the CHUV and the collaboration with Laboratoire 3S-R,Grenoble are gratefully acknowledged
文摘A series of triaxial laboratory experiments are performed on thick-walled hollow cylindrical samples of boom clay.The aim of this testing program is to better understand the anisotropic deformation during the excavation.The testing conditions are similar to those to be experienced by host rocks around disposal galleries for radioactive waste.X-ray computed tomography is performed at different steps for each test with the samples remaining inside the loading cell.Initial analysis of the tomography images allows of the observation of the deformation of the central hole.In addition,particles manual tracking and 3D volumetric digital image correlation processing methods are considered being used to analyze the particles displacements and the boundary deformation of the sample quantitatively.An unsymmetrical damaged zone is induced around the hole,with a reverse deformation trend being found at the boundary after unloading,which indicates that the significant anisotropic deformation of boom clay can be induced by mechanical unloading.