We investigated the role of volatiles in the porous structure of coal samples and the corresponding structural deformations that affect the coals' methane adsorption capacity. For this study, the volatiles in coal we...We investigated the role of volatiles in the porous structure of coal samples and the corresponding structural deformations that affect the coals' methane adsorption capacity. For this study, the volatiles in coal were gradually removed by extraction. Changes in the crystal, textural, and porous structures were identified by means of thermogravimetric analysis, X-ray diffraction, and N2 adsorption/desorption. Changes in the methane adsorption behavior before and after volatile removal were investigated. It was found that changes in methane adsorption could be attributed to volatile-related deformations in the coal's porous structure. Microstructural characterizations indicated that the volatiles could be found in two states within the coal, either trapped in the pores, or cross-linked in the network. The former played an important role in constructing the pore spaces and walls within the coal and affected the accessibility of gases. The latter cross-linked state retained the volatiles within the macromolecular coal structural network. This state affected coal-coal interactions, which was a factor that controlled the crystal structure of coal and contributed to the number of porous deformations.展开更多
Soil in a cold region is subject to frequent freezing and thawing cycles.Soil frozen for a prolonged period may cause adverse freeze damage to the plants due to cell dehydration or root cell rupture.It is important to...Soil in a cold region is subject to frequent freezing and thawing cycles.Soil frozen for a prolonged period may cause adverse freeze damage to the plants due to cell dehydration or root cell rupture.It is important to understand the detailed heat transfer behaviors of the freezing and thawing processes to prevent freeze damage,and to devise proper mitigation measures for effective pot planting in cold regions.A theoretical model was developed to analyze the transient moving phase-change interface heat transfer in the freezing and thawing of porous potting soil.The theoretical derivation is based on the assumption that the soil freezes completely at a single temperature.Microscopic poromechanic effects on heat transfer behavior were ignored.The spatial domain of the problem was simplified to a 1D spherical coordinate system with variation in the radial direction.Green's function was applied to solve for the time-dependent body temperature.Experiments were conducted for validation of the theoretical model.Reasonable agreement between the theoretical predictions and experimental measurements was obtained.The theoretical model developed can be easily used to determine the sensitivity of various parameters in the freezing/thawing processes,e.g.,thermal properties of soil,ambient temperature,and planting pot size.展开更多
基金supported by the National Basic Research Program of China (2011CB201202)
文摘We investigated the role of volatiles in the porous structure of coal samples and the corresponding structural deformations that affect the coals' methane adsorption capacity. For this study, the volatiles in coal were gradually removed by extraction. Changes in the crystal, textural, and porous structures were identified by means of thermogravimetric analysis, X-ray diffraction, and N2 adsorption/desorption. Changes in the methane adsorption behavior before and after volatile removal were investigated. It was found that changes in methane adsorption could be attributed to volatile-related deformations in the coal's porous structure. Microstructural characterizations indicated that the volatiles could be found in two states within the coal, either trapped in the pores, or cross-linked in the network. The former played an important role in constructing the pore spaces and walls within the coal and affected the accessibility of gases. The latter cross-linked state retained the volatiles within the macromolecular coal structural network. This state affected coal-coal interactions, which was a factor that controlled the crystal structure of coal and contributed to the number of porous deformations.
基金Project(No.10206014)supported by Research Grant Council Direct Allocation Fund from the University of Hong Kong,China
文摘Soil in a cold region is subject to frequent freezing and thawing cycles.Soil frozen for a prolonged period may cause adverse freeze damage to the plants due to cell dehydration or root cell rupture.It is important to understand the detailed heat transfer behaviors of the freezing and thawing processes to prevent freeze damage,and to devise proper mitigation measures for effective pot planting in cold regions.A theoretical model was developed to analyze the transient moving phase-change interface heat transfer in the freezing and thawing of porous potting soil.The theoretical derivation is based on the assumption that the soil freezes completely at a single temperature.Microscopic poromechanic effects on heat transfer behavior were ignored.The spatial domain of the problem was simplified to a 1D spherical coordinate system with variation in the radial direction.Green's function was applied to solve for the time-dependent body temperature.Experiments were conducted for validation of the theoretical model.Reasonable agreement between the theoretical predictions and experimental measurements was obtained.The theoretical model developed can be easily used to determine the sensitivity of various parameters in the freezing/thawing processes,e.g.,thermal properties of soil,ambient temperature,and planting pot size.