In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) ...In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) requirements. The purpose of this paper is not only to examine the FRT behavior of a full-power converter wind turbine but also to combine the power system viewpoint to the studies. It is not enough for the turbine to be FRT capable; the loss of mains (LOM) protection of the turbine must also be set to allow the FRT. Enabling FRT, however, means that the LOM protection settings must be loosen, which may sometimes pose a safety hazard. This article introduces unique real-time simulation environment and proposes an FRT method for a wind turbine that also takes the operation of LOM protection relay into account. Simulations are carried out using the simulation environment and results show that wind turbine is able to ride-through a symmetrical power system fault.展开更多
Two non-isospectral KdV equations with self-consistent sources are derived. Gauge transformation between the first non-isospectral KdV equation with self-consistent sources (corresponding to λt = -2aA) and its isos...Two non-isospectral KdV equations with self-consistent sources are derived. Gauge transformation between the first non-isospectral KdV equation with self-consistent sources (corresponding to λt = -2aA) and its isospectral counterpart is given, from which exact solutions for the first non-isospectral KdV equation with self-consistent sources is easily listed. Besides, the soliton solutions for the two equations are obtained by means of Hirota's method and Wronskian technique, respectively. Meanwhile, the dynamical properties for these solutions are investigated.展开更多
A novel wheel-track hybrid mobile robot with many movement patterns is designed.According to different environments,it can switch between the pure wheel pattern and the pure track one.According to a homogeneous coordi...A novel wheel-track hybrid mobile robot with many movement patterns is designed.According to different environments,it can switch between the pure wheel pattern and the pure track one.According to a homogeneous coordinate transformation matrix,gravity stability and its obstacle performance are analyzed.Its gravity equation and climbing obstacle conditions are established.Experimental results show that this hybrid mobile robot could fully possess the advantages of both the wheel and the track mechanisms and achieve a good obstacle climbing capability.展开更多
A new kind of eight-wheel lunar rover is developed, which is a complex closed-chain system and has good capabilities of climbing slope, surmounting obstacles and adapting to uneven terrain. In this paper, the mechanic...A new kind of eight-wheel lunar rover is developed, which is a complex closed-chain system and has good capabilities of climbing slope, surmounting obstacles and adapting to uneven terrain. In this paper, the mechanical structure of the novel eight-wheel lunar rover is introduced, forward and inverse kinematic models of the rover are established according to the closed-chain coordinate transformation and instantaneous coincidence coordinate. Based on structural characteristics, its kinetic characteristics are analyzed. Wheel slippages are separated and calculated, and a method for closed-loop control modification using wheel slip estimation during the model establishment is proposed. The results can be applied to the motion control of lunar rover.展开更多
Distribution networks face an increasing penetration of solar PV (photovoltaic) and small WTG (wind turbine generator) as well as other forms of micro-generation. To this scenario, one must add the dissemination o...Distribution networks face an increasing penetration of solar PV (photovoltaic) and small WTG (wind turbine generator) as well as other forms of micro-generation. To this scenario, one must add the dissemination of non-linear loads such as EV (electric vehicles). There is something in common between those loads and sources: the extensive use of power electronic converters with commutated switches. These devices may be a source of medium-to-high frequency harmonic distortion and their impact on the local distribution grid must be carefully assessed in order to evaluate their negative impacts on the network, on the existing conventional loads and also on other active devices. In this paper, methodologies to characterize effects such as: harmonics, network unbalances, damaging power line resonance conditions, and over/under voltages are described and applied to a real local grid configuration.展开更多
In modem protection relays, the accurate and fast fault location is an essential task for transmission line protection from the point of service restoration and reliability. The applications of neural networks based f...In modem protection relays, the accurate and fast fault location is an essential task for transmission line protection from the point of service restoration and reliability. The applications of neural networks based fault location techniques to transmission line are available in many papers. However, almost all the studies have so far employed the FNN (feed-forward neural network) trained with back-propagation algorithm (BPNN) which has a better structure and been widely used. But there are still many drawbacks if we simply use feed-forward neural network, such as slow training rate, easy to trap into local minimum point, and bad ability on global search. In this paper, feed-forward neural network trained by PSO (particle swarm optimization) algorithm is proposed for fault location scheme in 500 kV transmission system with distributed parameters presentation, The purpose is to simulate distance protection relay. The algorithm acts as classifier which requires phasor measurements data from one end of the transmission line and DFT (discrete Fourier transform). Extensive simulation studies carried out using MATLAB show that the proposed scheme has the ability to give a good estimation of fault location under various fault conditions.展开更多
This paper describes the principles of operation and the physical model of an advanced AC-DC converter generator (with the electronic converter acting as an AC-DC rectifier with reverse-conducting MOSFETs (metal-oxi...This paper describes the principles of operation and the physical model of an advanced AC-DC converter generator (with the electronic converter acting as an AC-DC rectifier with reverse-conducting MOSFETs (metal-oxide semiconductor field-effect transistors) as fast-electronic switches with a relatively low ON-state voltage drop) for HSVs. An AC-DC converter, when seen as an AC-DC rectifier, can be used in many fields, e.g., for multi-functional AC-DC/DC-AC convener generator^starter and conventional DC-AC convener motors and AC-DC converter generators or generator sets, welding machines, etc. The paper also describes a novel AC-DC convener, with reverse-conducting transistors and without the use of optoelectronic separation (which does not require a separate power supply), which may be easily realized in IC (integrated-circuit) technology. Computer simulation allows for waveform evaluation for timing analysis of all components of the AC-DC-converter's physical model, both during normal operation as well as in some states of emergency. The paper also presents the results of bench experimental studies where the MOSFETs were used as fast-electronic switches with a relatively low ON-state voltage drop. For experimental studies, a novel AC-DC converter has been put together on the Mitsubishi FM600TU-3A module. The AC-DC converter with reverse-conducting transistors in a double-way connection has a lot of advantages compared to the conventional AC-DC convener acting as a diode rectifier, such as higher energy efficiency and greater reliability resulting from the lower temperature of electronic switches.展开更多
An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic tempera...An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic temperatures were defined, then the actual power cycle or refrigeration/heat pump cycle was transformed into the equivalent reversible Carnot or reverse Carnot cycles for thermodynamic analysis. The derived effective thermodynamic temperature of the hot reservoir of the equivalent reverse Camot cycle is the basis of the proposed method. The combined diagram of TR-h and TR-q was adopted for the analy- sis of the system performance and the exergy consumption, which takes advantage of the visual expression of the heat/work exchange and the enthalpy change, and is convenient for the calculation of the coefficient of performance and exergy con- sumptions. Take a heat pump water heater with refrigerant of R22 for example, the proposed method was systematically intro- duced, and the fitting formulas of the effective thermodynamic temperatures were given as demonstration. The results show that the proposed method has advantage and well application foreground in the performance simulation and estimation under the variable working conditions.展开更多
文摘In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) requirements. The purpose of this paper is not only to examine the FRT behavior of a full-power converter wind turbine but also to combine the power system viewpoint to the studies. It is not enough for the turbine to be FRT capable; the loss of mains (LOM) protection of the turbine must also be set to allow the FRT. Enabling FRT, however, means that the LOM protection settings must be loosen, which may sometimes pose a safety hazard. This article introduces unique real-time simulation environment and proposes an FRT method for a wind turbine that also takes the operation of LOM protection relay into account. Simulations are carried out using the simulation environment and results show that wind turbine is able to ride-through a symmetrical power system fault.
基金supported by the National Natural Science Foundation of China under Grant Nos. 10371070 and 10671121the Foundation for Excellent Postgraduates of Shanghai University under Grant No. Shucx080127
文摘Two non-isospectral KdV equations with self-consistent sources are derived. Gauge transformation between the first non-isospectral KdV equation with self-consistent sources (corresponding to λt = -2aA) and its isospectral counterpart is given, from which exact solutions for the first non-isospectral KdV equation with self-consistent sources is easily listed. Besides, the soliton solutions for the two equations are obtained by means of Hirota's method and Wronskian technique, respectively. Meanwhile, the dynamical properties for these solutions are investigated.
基金Supported by the National Natural Science Foundation of China(No.61175069,51075272,51475300)
文摘A novel wheel-track hybrid mobile robot with many movement patterns is designed.According to different environments,it can switch between the pure wheel pattern and the pure track one.According to a homogeneous coordinate transformation matrix,gravity stability and its obstacle performance are analyzed.Its gravity equation and climbing obstacle conditions are established.Experimental results show that this hybrid mobile robot could fully possess the advantages of both the wheel and the track mechanisms and achieve a good obstacle climbing capability.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50975059)the National High-Tech Research and Development Program of China(863 Program)(Grant No.2006AA04Z231)+1 种基金the College Discipline Innovation Wisdom Plan(Grant No.B07018)Development Program of the Excellent Youth Scholars of Harbin Institute of Technology(Grant No.CACZ98504837)
文摘A new kind of eight-wheel lunar rover is developed, which is a complex closed-chain system and has good capabilities of climbing slope, surmounting obstacles and adapting to uneven terrain. In this paper, the mechanical structure of the novel eight-wheel lunar rover is introduced, forward and inverse kinematic models of the rover are established according to the closed-chain coordinate transformation and instantaneous coincidence coordinate. Based on structural characteristics, its kinetic characteristics are analyzed. Wheel slippages are separated and calculated, and a method for closed-loop control modification using wheel slip estimation during the model establishment is proposed. The results can be applied to the motion control of lunar rover.
文摘Distribution networks face an increasing penetration of solar PV (photovoltaic) and small WTG (wind turbine generator) as well as other forms of micro-generation. To this scenario, one must add the dissemination of non-linear loads such as EV (electric vehicles). There is something in common between those loads and sources: the extensive use of power electronic converters with commutated switches. These devices may be a source of medium-to-high frequency harmonic distortion and their impact on the local distribution grid must be carefully assessed in order to evaluate their negative impacts on the network, on the existing conventional loads and also on other active devices. In this paper, methodologies to characterize effects such as: harmonics, network unbalances, damaging power line resonance conditions, and over/under voltages are described and applied to a real local grid configuration.
文摘In modem protection relays, the accurate and fast fault location is an essential task for transmission line protection from the point of service restoration and reliability. The applications of neural networks based fault location techniques to transmission line are available in many papers. However, almost all the studies have so far employed the FNN (feed-forward neural network) trained with back-propagation algorithm (BPNN) which has a better structure and been widely used. But there are still many drawbacks if we simply use feed-forward neural network, such as slow training rate, easy to trap into local minimum point, and bad ability on global search. In this paper, feed-forward neural network trained by PSO (particle swarm optimization) algorithm is proposed for fault location scheme in 500 kV transmission system with distributed parameters presentation, The purpose is to simulate distance protection relay. The algorithm acts as classifier which requires phasor measurements data from one end of the transmission line and DFT (discrete Fourier transform). Extensive simulation studies carried out using MATLAB show that the proposed scheme has the ability to give a good estimation of fault location under various fault conditions.
文摘This paper describes the principles of operation and the physical model of an advanced AC-DC converter generator (with the electronic converter acting as an AC-DC rectifier with reverse-conducting MOSFETs (metal-oxide semiconductor field-effect transistors) as fast-electronic switches with a relatively low ON-state voltage drop) for HSVs. An AC-DC converter, when seen as an AC-DC rectifier, can be used in many fields, e.g., for multi-functional AC-DC/DC-AC convener generator^starter and conventional DC-AC convener motors and AC-DC converter generators or generator sets, welding machines, etc. The paper also describes a novel AC-DC convener, with reverse-conducting transistors and without the use of optoelectronic separation (which does not require a separate power supply), which may be easily realized in IC (integrated-circuit) technology. Computer simulation allows for waveform evaluation for timing analysis of all components of the AC-DC-converter's physical model, both during normal operation as well as in some states of emergency. The paper also presents the results of bench experimental studies where the MOSFETs were used as fast-electronic switches with a relatively low ON-state voltage drop. For experimental studies, a novel AC-DC converter has been put together on the Mitsubishi FM600TU-3A module. The AC-DC converter with reverse-conducting transistors in a double-way connection has a lot of advantages compared to the conventional AC-DC convener acting as a diode rectifier, such as higher energy efficiency and greater reliability resulting from the lower temperature of electronic switches.
基金supported by the National Natural Science Foundation of China (Grant No. 51076147)
文摘An effective thermodynamic transformation analysis method was proposed in this study. According to the phenomenon of ex- ergy consumption always coupling with heat transfer process, the effective thermodynamic temperatures were defined, then the actual power cycle or refrigeration/heat pump cycle was transformed into the equivalent reversible Carnot or reverse Carnot cycles for thermodynamic analysis. The derived effective thermodynamic temperature of the hot reservoir of the equivalent reverse Camot cycle is the basis of the proposed method. The combined diagram of TR-h and TR-q was adopted for the analy- sis of the system performance and the exergy consumption, which takes advantage of the visual expression of the heat/work exchange and the enthalpy change, and is convenient for the calculation of the coefficient of performance and exergy con- sumptions. Take a heat pump water heater with refrigerant of R22 for example, the proposed method was systematically intro- duced, and the fitting formulas of the effective thermodynamic temperatures were given as demonstration. The results show that the proposed method has advantage and well application foreground in the performance simulation and estimation under the variable working conditions.