This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are es...This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are established. The definition of the Lie symmetrical transformations of the systems is given, which only depends upon the infinitesimal transformations of groups for the generalized coordinates. The conserved quantity is directly constructed in terms of the Lie symmetry of the systems. The condition under which the Lie symmetry can lead to the conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.展开更多
文摘This paper presents a new method to seek the conserved quantity from a Lie symmetry without using either Lagrangians or Hamiltonians for nonholonomic systems. The differential equations of motion of the systems are established. The definition of the Lie symmetrical transformations of the systems is given, which only depends upon the infinitesimal transformations of groups for the generalized coordinates. The conserved quantity is directly constructed in terms of the Lie symmetry of the systems. The condition under which the Lie symmetry can lead to the conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.