The quality factor(or Q value)is an important parameter for characterizing the inelastic properties of rock.Achieving a Q value estimation with high accuracy and stability is still challenging.In this study,a new meth...The quality factor(or Q value)is an important parameter for characterizing the inelastic properties of rock.Achieving a Q value estimation with high accuracy and stability is still challenging.In this study,a new method for estimating ultrasonic attenuation using a spectral ratio based on an S transform(SR-ST)is presented to improve the stability and accuracy of Q estimation.The variable window of ST is used to solve the time window problem.We add two window factors to the Gaussian window function in the ST.The window factors can adjust the scale of the Gaussian window function to the ultrasonic signal,which reduces the calculation error attributed to the conventional Gaussian window function.Meanwhile,the frequency bandwidth selection rules for the linear regression of the amplitude ratio are given to further improve stability and accuracy.First,the feasibility and influencing factors of the SR-ST method are studied through numerical testing and standard sample experiments.Second,artificial samples with different Q values are used to study the adaptability and stability of the SR-ST method.Finally,a further comparison between the new method and the conventional spectral ratio method(SR)is conducted using rock field samples,again addressing stability and accuracy.The experimental results show that this method will yield an error of approximately 36%using the conventional Gaussian window function.This problem can be solved by adding the time window factors to the Gaussian window function.The frequency bandwidth selection rules and mean slope value of the amplitude ratio used in the SR-ST method can ensure that the maximum error of different Q values estimation(Q>15)is less than 10%.展开更多
Previous studies have shown that for the Supernova Legacy Survey three-year (SNLS3) data there is strong evidence for the redshifl- evolution of color-luminosity parameter β of type Ia supernovae (SN Ia). In this...Previous studies have shown that for the Supernova Legacy Survey three-year (SNLS3) data there is strong evidence for the redshifl- evolution of color-luminosity parameter β of type Ia supernovae (SN Ia). In this paper, we explore the effects of varying β on the cosmological constraints of holographic dark energy (HDE) model. In addition to the SNLS3 data, we also use Planck distance prior data of cosmic microwave background (CMB), as well as galaxy clustering (GC) data extracted from Sloan Digital Sky Survey (SDSS) data release 7 and Baryon Oscillation Spectroscopic Survey (BOSS). We find that, for the both cases of using SN data alone and using SN+CMB+GC data, involving an additional parameter of β can reduce χ^2 by - 36; this shows that β deviates from a constant at 6σ- confidence levels. Adopting SN+CMB+GC data, we find that compared to the constant β case, varying β yields a larger fractional matter density Ωm0 and a smaller reduced Hubble constant h; moreover, varying β significantly increases the value of HDE model parameter c, leading to c ≈ 0.8, consistent with the constraint results obtained before Planck. These results indicate that the evolution of β should be taken into account seriously in the cosmological fits. In addition, we find that relative to the differences between the constant β and varying β(z) cases, the effects of different light-curve fitters on parameter estimation are very small.展开更多
基金supported by the Special Fund of the Institute of Geophysics,China Earthquake Administration(Nos.DQJB19B02 and DQJB17T04)
文摘The quality factor(or Q value)is an important parameter for characterizing the inelastic properties of rock.Achieving a Q value estimation with high accuracy and stability is still challenging.In this study,a new method for estimating ultrasonic attenuation using a spectral ratio based on an S transform(SR-ST)is presented to improve the stability and accuracy of Q estimation.The variable window of ST is used to solve the time window problem.We add two window factors to the Gaussian window function in the ST.The window factors can adjust the scale of the Gaussian window function to the ultrasonic signal,which reduces the calculation error attributed to the conventional Gaussian window function.Meanwhile,the frequency bandwidth selection rules for the linear regression of the amplitude ratio are given to further improve stability and accuracy.First,the feasibility and influencing factors of the SR-ST method are studied through numerical testing and standard sample experiments.Second,artificial samples with different Q values are used to study the adaptability and stability of the SR-ST method.Finally,a further comparison between the new method and the conventional spectral ratio method(SR)is conducted using rock field samples,again addressing stability and accuracy.The experimental results show that this method will yield an error of approximately 36%using the conventional Gaussian window function.This problem can be solved by adding the time window factors to the Gaussian window function.The frequency bandwidth selection rules and mean slope value of the amplitude ratio used in the SR-ST method can ensure that the maximum error of different Q values estimation(Q>15)is less than 10%.
基金supported by the National Natural Science Foundation of China(Grant Nos.11405024 and 11175042)the Fundamental Research Fundsfor the Central Universities(Grant Nos.N130305007 and N120505003)
文摘Previous studies have shown that for the Supernova Legacy Survey three-year (SNLS3) data there is strong evidence for the redshifl- evolution of color-luminosity parameter β of type Ia supernovae (SN Ia). In this paper, we explore the effects of varying β on the cosmological constraints of holographic dark energy (HDE) model. In addition to the SNLS3 data, we also use Planck distance prior data of cosmic microwave background (CMB), as well as galaxy clustering (GC) data extracted from Sloan Digital Sky Survey (SDSS) data release 7 and Baryon Oscillation Spectroscopic Survey (BOSS). We find that, for the both cases of using SN data alone and using SN+CMB+GC data, involving an additional parameter of β can reduce χ^2 by - 36; this shows that β deviates from a constant at 6σ- confidence levels. Adopting SN+CMB+GC data, we find that compared to the constant β case, varying β yields a larger fractional matter density Ωm0 and a smaller reduced Hubble constant h; moreover, varying β significantly increases the value of HDE model parameter c, leading to c ≈ 0.8, consistent with the constraint results obtained before Planck. These results indicate that the evolution of β should be taken into account seriously in the cosmological fits. In addition, we find that relative to the differences between the constant β and varying β(z) cases, the effects of different light-curve fitters on parameter estimation are very small.