A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of str...A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of strain components under various loading conditions are linearly related and these points of ratios form a η-η line.Under these simple loadings,strains in thickness direction can be easily calculated by the η-η line equation without integral and differential work.When the plate is under more complicated loading conditions,the thickness can be computed by the proposed optimization and piecewise calculation model.Validation computations indicate that the relative error of the results of the presented model is less than 0.75% compared with the proven theories and FE simulation.Therefore,the developed model can be applied to engineering calculation,e.g.pre-stretching analysis of aerospace aluminium thick plate,with acceptable accuracy.展开更多
In this paper the entanglement of pure 3-qubit states is discussed. The local unitary (LU) polynomial invariants that are closely related to the canonical forms are constructed and the relations of the coefficients ...In this paper the entanglement of pure 3-qubit states is discussed. The local unitary (LU) polynomial invariants that are closely related to the canonical forms are constructed and the relations of the coefficients of the canonical forms are given. Then the stochastic local operations and classlcal communication (SLOCC) classification of the states are discussed on the basis of the canonical forms, and the symmetric canonical form of the states without 3-tangle is discussed. Finally, we give the relation between the LU polynomial invariants and SLOCC classification.展开更多
Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression a...Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression analysis (MVRA) were developed to predict deformation modulus based on data obtained from dilatometer tests carried out in Bakhtiary dam site and additional data collected from longwall coal mines. Models inputs were considered to be rock quality designation, overburden height, weathering, unconfined compressive strength, bedding inclination to core axis, joint roughness coefficient and fill thickness. To control the models performance, calculating indices such as root mean square error (RMSE), variance account for (VAF) and determination coefficient (R^2) were used. The MFS results show the significant prediction accuracy along with high performance compared to MVRA results. Finally, the sensitivity analysis of MFS results shows that the most and the least effective parameters on deformation modulus are weatherin~ and overburden height, respectively.展开更多
A novel algorithm for a rotation invariant template matching is proposed when the fluctuating scope of the rotation angle is limited within the region of [-20°,20°]. The matching candidates are selected usin...A novel algorithm for a rotation invariant template matching is proposed when the fluctuating scope of the rotation angle is limited within the region of [-20°,20°]. The matching candidates are selected using a computationally low cost improved correlation algorithm. "AND" operation is adopted to reduce the computational cost. Therefore the algorithm improves the matching speed consumedly. The simulation results verify the efficiency of the proposed method. Moreover,when the size of reference image is fixed,the advantage of this time-saving algorithm is more obvious as the increase of the size of the real time image. The matching speed of the proposed method is over 20 times faster than the speed of the two-level pyramid decomposing accelerating method.展开更多
基金Project(51475483)supported by the National Natural Science Foundation of ChinaProject(2014FJ3002)supported by Science and Technology Project of Hunan Province,ChinaProject supported by Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘A thickness strain model of aluminium alloy plate under plastic deformation,based on thin plate assumption was proposed.It is found that when ratio of stress fractions is constant during in-plane loading,ratios of strain components under various loading conditions are linearly related and these points of ratios form a η-η line.Under these simple loadings,strains in thickness direction can be easily calculated by the η-η line equation without integral and differential work.When the plate is under more complicated loading conditions,the thickness can be computed by the proposed optimization and piecewise calculation model.Validation computations indicate that the relative error of the results of the presented model is less than 0.75% compared with the proven theories and FE simulation.Therefore,the developed model can be applied to engineering calculation,e.g.pre-stretching analysis of aerospace aluminium thick plate,with acceptable accuracy.
基金The project supported by National Natural Science Foundation of China under Grant No. 6J3433050 and the Natural Science Foundation of Xuzhou Normal University (Key Project) under Grant No. 03XLA04
文摘In this paper the entanglement of pure 3-qubit states is discussed. The local unitary (LU) polynomial invariants that are closely related to the canonical forms are constructed and the relations of the coefficients of the canonical forms are given. Then the stochastic local operations and classlcal communication (SLOCC) classification of the states are discussed on the basis of the canonical forms, and the symmetric canonical form of the states without 3-tangle is discussed. Finally, we give the relation between the LU polynomial invariants and SLOCC classification.
文摘Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression analysis (MVRA) were developed to predict deformation modulus based on data obtained from dilatometer tests carried out in Bakhtiary dam site and additional data collected from longwall coal mines. Models inputs were considered to be rock quality designation, overburden height, weathering, unconfined compressive strength, bedding inclination to core axis, joint roughness coefficient and fill thickness. To control the models performance, calculating indices such as root mean square error (RMSE), variance account for (VAF) and determination coefficient (R^2) were used. The MFS results show the significant prediction accuracy along with high performance compared to MVRA results. Finally, the sensitivity analysis of MFS results shows that the most and the least effective parameters on deformation modulus are weatherin~ and overburden height, respectively.
基金the preparing Fund for defence equipment (No.6140517)
文摘A novel algorithm for a rotation invariant template matching is proposed when the fluctuating scope of the rotation angle is limited within the region of [-20°,20°]. The matching candidates are selected using a computationally low cost improved correlation algorithm. "AND" operation is adopted to reduce the computational cost. Therefore the algorithm improves the matching speed consumedly. The simulation results verify the efficiency of the proposed method. Moreover,when the size of reference image is fixed,the advantage of this time-saving algorithm is more obvious as the increase of the size of the real time image. The matching speed of the proposed method is over 20 times faster than the speed of the two-level pyramid decomposing accelerating method.