针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计...针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计算的有限元离散方程;其次,采用POD降阶算法改善传统瞬态计算中存在的条件数过大及方程阶数过高的问题;同时对于瞬态计算中的时间步长选择问题,提出适用于非线性问题的αATS变步长策略;然后,为验证方法的有效性,基于110 kV油浸式电力变压器绕组的基本结构建立二维八分区数值计算模型,同时将计算结果与基于110 kV绕组的温升实验结果进行对比。数值计算及实验结果表明,所提算法与全阶定步长算法在流场和温度场中的精度几乎相同,且流场计算效率提升约45倍,温度场计算效率提升约38倍,计算速度得到显著提高。这一点在温升实验中同样得到验证,说明该文所提算法的准确性、高效性及一定的工程实用性。展开更多
针对传统奇异值阈值(Singular Value Thresholding,SVT)数据恢复算法在对电力负荷数据恢复中忽视数据先验信息以及大规模数据计算效率低等问题,提出一种基于相空间重构与自适应变步长的改进SVT的数据恢复算法.为解决传统SVT容易忽视数...针对传统奇异值阈值(Singular Value Thresholding,SVT)数据恢复算法在对电力负荷数据恢复中忽视数据先验信息以及大规模数据计算效率低等问题,提出一种基于相空间重构与自适应变步长的改进SVT的数据恢复算法.为解决传统SVT容易忽视数据先验信息的问题,引入相空间重构算法将原始缺失数据映射到高维空间,利用数据间的关联性和结构特征,为后续数据恢复算法提供先验知识;结合对数与Sigmoid函数构建变步长基础函数,并利用等比项提高前期步长,构建自适应变步长SVT算法,克服传统SVT在大规模数据情况下计算效率低的问题.结合多项公用电力负荷数据集及多种常用电力负荷数据恢复算法进行对比实验分析,结果表明,改进SVT算法可获得更好的数据恢复效果,收敛速度、精度以及稳定性得到提升,具有较强的工程实用性.展开更多
文摘针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计算的有限元离散方程;其次,采用POD降阶算法改善传统瞬态计算中存在的条件数过大及方程阶数过高的问题;同时对于瞬态计算中的时间步长选择问题,提出适用于非线性问题的αATS变步长策略;然后,为验证方法的有效性,基于110 kV油浸式电力变压器绕组的基本结构建立二维八分区数值计算模型,同时将计算结果与基于110 kV绕组的温升实验结果进行对比。数值计算及实验结果表明,所提算法与全阶定步长算法在流场和温度场中的精度几乎相同,且流场计算效率提升约45倍,温度场计算效率提升约38倍,计算速度得到显著提高。这一点在温升实验中同样得到验证,说明该文所提算法的准确性、高效性及一定的工程实用性。
文摘针对传统奇异值阈值(Singular Value Thresholding,SVT)数据恢复算法在对电力负荷数据恢复中忽视数据先验信息以及大规模数据计算效率低等问题,提出一种基于相空间重构与自适应变步长的改进SVT的数据恢复算法.为解决传统SVT容易忽视数据先验信息的问题,引入相空间重构算法将原始缺失数据映射到高维空间,利用数据间的关联性和结构特征,为后续数据恢复算法提供先验知识;结合对数与Sigmoid函数构建变步长基础函数,并利用等比项提高前期步长,构建自适应变步长SVT算法,克服传统SVT在大规模数据情况下计算效率低的问题.结合多项公用电力负荷数据集及多种常用电力负荷数据恢复算法进行对比实验分析,结果表明,改进SVT算法可获得更好的数据恢复效果,收敛速度、精度以及稳定性得到提升,具有较强的工程实用性.