期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
变气速气-固流态化流体力学 被引量:5
1
作者 牛学义 王樟茂 +1 位作者 戌顺熙 陈甘棠 《化学反应工程与工艺》 CAS CSCD 北大核心 1993年第4期465-470,共6页
在φ100mm流化床内,使用活性炭,高密度聚乙烯、石英砂3种B类粒子,测定了当脉冲气流频率在0~7HZ时,变气速流化的床层压降、起始流化速率和空隙率。实验得到了反映变气速流化时起始流化速度降低的u^0mf-up图。通... 在φ100mm流化床内,使用活性炭,高密度聚乙烯、石英砂3种B类粒子,测定了当脉冲气流频率在0~7HZ时,变气速流化的床层压降、起始流化速率和空隙率。实验得到了反映变气速流化时起始流化速度降低的u^0mf-up图。通过测定床底的压力波动,得到了反映变气速流化的强制振动作用与脉冲气速、平稳气速的关系的ue-up图。 展开更多
关键词 变气速 固流态化 流体力学
下载PDF
线性变气速下的下行床内轴向流动结构分析 被引量:1
2
作者 刘腾飞 邓任生 +1 位作者 魏飞 金涌 《过程工程学报》 CAS CSCD 北大核心 2001年第4期337-342,共6页
在气固两相连续方程和动量方程的基础上,考虑到下行床内表观气速的变化,建立了适用于变气速条件下的一维轴向流动模型,并着重考察了气固速度和空隙率的轴向分布情况.计算结果表明,线性变气速条件下的轴向流动情况与常气速下有明显的不同... 在气固两相连续方程和动量方程的基础上,考虑到下行床内表观气速的变化,建立了适用于变气速条件下的一维轴向流动模型,并着重考察了气固速度和空隙率的轴向分布情况.计算结果表明,线性变气速条件下的轴向流动情况与常气速下有明显的不同,也更接近于热态反应器的实际情况. 展开更多
关键词 下行床 变气速 一维模型 流态化 反应器 轴向流动
下载PDF
Sea level change and forecast in the future — climate of the past,today and the future 被引量:1
3
作者 岳军 DONG yue +3 位作者 陈满春 韩芳 段焕春 王国明 《Marine Science Bulletin》 CAS 2011年第2期33-50,共18页
The sea-level change is resulted from superposition of sun, moon and other planeries, and earth itself, biological process, atmosphere and oceanography, as well as artificial actions. As a result, the sea level change... The sea-level change is resulted from superposition of sun, moon and other planeries, and earth itself, biological process, atmosphere and oceanography, as well as artificial actions. As a result, the sea level change is really a sensitive integral variation value of many variations, or a combined function of coupling effects of various big systems. Therefore the above mentioned superposed action of different systems and the coupling effect of sun earth and biological aspects may be called as sun earth biological coupling effect system. Based on this hypothesis, the corresponding sun dynamic, air dynamic, water dynamic and earth dynamic conceptional models are established in order to research the multiple coupling effects and feedback machsnism between these big systems. In order to determine the relations, effectness and coherent relation of different variations, the quantity, analysis is conducted through collective variation and stage division. The quantity analysis indicates that the earths spindle rotation speed is the dynamic mechanism controlling the sea level change of fluctuation. The change rate of sea level in the world is +1.32 + 0.22 mm/a, while the sea level change rate in China is only+1.39 + 0.26 mm/a in average. If take the CO2 content as the climate marker, eight cold stages (periods) are grouped out since two hundreds years AC. The extreme cold of the eighth cold stage started approximately at 1850 years AC. and if the stage from the extreme cold to extreme warm is determined as long as 200 years, the present ongoing warm stage will end at about 2050 years, there after the temperature will begin to tower. If the stage between cold and warm extremes lasts for 250 years, then the temperature will become lower at about 2100 year. Until to that time, the sea-level is estimated to raise +7 - +11 + 3.5 cm again, and there after, the sea level will begin the new lowering trend. In the same time, the climate will enter into next new cold stage subsequently. 展开更多
关键词 Sun earth biological coupling effect system sea-level change mechanism change rate of the sea-level climate cold stage forecast of the sea-level changes in the future
下载PDF
Effects of initial bubble size on geometric and motion characteristics of bubble released in water 被引量:4
4
作者 KANG Can ZHANG Wei +1 位作者 ZOU Zi-wen PANG Chun-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第12期3021-3032,共12页
To seek and describe the influence of bubble size on geometric and motion characteristics of the bubble,six nozzles with different outlet diameters were selected to inject air into water and to produce different bubbl... To seek and describe the influence of bubble size on geometric and motion characteristics of the bubble,six nozzles with different outlet diameters were selected to inject air into water and to produce different bubble sizes.High-speed photography in conjunction with an in-house bubble image processing code was used.During the evolution of the bubble,bubble shape,traveling trajectory and the variation of bubble velocity were obtained.Bubble sizes acquired varied from0.25to8.69mm.The results show that after the bubble is separated from the nozzle,bubble shape sequentially experiences ellipsoidal shape,hat shape,mushroom shape and eventually the stable ellipsoidal shape.As the bubble size increases,the oscillation of the bubble surface is intensified.At the stabilization stage of bubble motion,bubble trajectories conform approximately to the sinusoidal function.Meanwhile,with the increase in bubble size,the bubble trajectory tends to be straightened and the influence of the horizontal bubble velocity component on the bubble trajectory attenuates.The present results explain the phenomena related to relatively large bubble size,which extends the existing relationship between the bubble terminal velocity and the equivalent bubble diameter. 展开更多
关键词 bubble size nozzle diameter bubble deformation aspect ratio bubble terminal velocity
下载PDF
Changes of Gas Exchanges in Leaves of Different Cultivars of Winter Wheat Released in Different Years 被引量:5
5
作者 刘合芹 蒋高明 +6 位作者 张其德 孙家柱 渠春梅 郭仁俊 高雷明 白克智 匡廷云 《Acta Botanica Sinica》 CSCD 2002年第8期913-919,共7页
Three winter wheat cultivars ( Triticum aestivum L.), representatives of those widely cultivated in Beijing over the past six decades, were grown in the same environmental condition, and their physiological features w... Three winter wheat cultivars ( Triticum aestivum L.), representatives of those widely cultivated in Beijing over the past six decades, were grown in the same environmental condition, and their physiological features were investigated. Daily changes of net photosynthetic rate (P-n), transpiration (T-r) in different growth stages were measured in order to find the relationship between leaf photosynthesis and yield. Instantaneous water use efficiency (WUE) of leaf was calculated from P-n/T-r. It is suggested that relationship between photosynthetic rate and yield changed with the developing stages of wheat. High yield wheat cultivar Jingdong 8 (released in the 1990s) had a higher photosynthetic rate ( the maximal P-n increased by 77%) and transpiration rate (the maximal T-r increased by 69%), but a lower WUE than the low yield cultivar Yanda 1817 (released in the 1940s) during the day time at stem elongation stage. However; difference of P-n among the three cultivars changed with wheat growth process. Before 10 o'clock P-n in leaves of Jingdong 8 usually was the highest of the three cultivars, but P-n of Yanda 1817 was the highest after 10 o'clock. At dough ripe stage, P-n in leaves of Yanda. 1817 was the highest among the three cultivars during the whole day. The difference of changing trend of transpiration in three wheat cultivars was similar to P,, but WUE of Yanda 1817 was the highest in those three cultivars, indicating that the higher yield of Jingdong 8 was achieved via a greater consumption of water. Contrary to the cultivars released in the later period, midday depression of photosynthesis was small in Yanda 1817, which might suggest that Yanda 1817 was resistant to photoinhibition. It is possible that photosynthetic potential in leaves of wheat increased as wheat cultivars was improved over the past six decades. However, it became less resistant to photoinhibition. 展开更多
关键词 net photosynthesis daily change wheat cultivars transpiration rate water use efficiency
下载PDF
The anthropogenic acceleration and intensification of flash drought over the southeastern coastal region of China will continue into the future 被引量:2
6
作者 Yumiao Wang Xing Yuan 《Atmospheric and Oceanic Science Letters》 CSCD 2022年第5期61-67,共7页
The frequent and rapid onset of flash drought poses a serious threat to agriculture and ecosystems.Detecting human influences on flash droughts and estimating their future risks under climate change have attracted gre... The frequent and rapid onset of flash drought poses a serious threat to agriculture and ecosystems.Detecting human influences on flash droughts and estimating their future risks under climate change have attracted great attention.Focusing on a record-breaking flash drought event in the southeastern coastal region of China in summer 2020,the authors found that the suppression of convective precipitation and high temperature caused by the persistent high geopotential height anomalies and land-atmosphere dry coupling were important reasons for the rapid onset and strong intensity of the flash drought.Event attribution analysis with the latest CMIP6 data showed that anthropogenic climate change has not only increased the likelihood of an onset speed and intensity like those of the 2020 flash drought event,by about 93%±20%and 18%±15%,respectively,but also increased the chance of their simultaneous occurrence,by about 86%±38%,according to their joint probability distribution.Under a business-as-usual future scenario(SSP2-4.5),the likelihood of such an onset speed,intensity,and their simultaneous occurrence will further increase,by 85%±33%,49%±8%,and 81%±48%,respectively,as compared with current climate conditions.This study highlights the importance of anthropogenic climate change for accelerating and intensifying flash drought in the southeastern coastal region of China. 展开更多
关键词 Flash drought Climate change Drought onset speed Detection and attribution
下载PDF
Basic Features of Climate Change in North China during 1961-2010 被引量:1
7
作者 GUO Wen-Li SHI Hong-Bo +4 位作者 MA Jing-Jin ZHANG Ying-Juan WANG Ji SHU Wen-Jun ZHANG Zi-Yin 《Advances in Climate Change Research》 SCIE 2013年第2期73-83,共11页
The spatial and temporal variations of some important near-surface climate parameters and extreme climate events in North China during 1961-2010 are analyzed by using 94 meteorological stations' data in the study are... The spatial and temporal variations of some important near-surface climate parameters and extreme climate events in North China during 1961-2010 are analyzed by using 94 meteorological stations' data in the study area. Results show that the annual mean surface air temperature in North China increased at the rate of 0.36℃ per decade, higher than the national average in the same period. Increasing was particularly significant since the mid-1980s, with maximum increase in the middle and northeastern parts of Inner Mongolia. Increasing rate of the annual mean minimum temperature is much higher than that of the maximum temperature, which results in the decrease of the annual mean diurnal temperature range. Noticeable decrease is also observed in the frequency of cold wave. Annual precipitation shows a slight decreasing trend, with more pronounced decrease in southern Shanxi and eastern Hebei provinces, which is mainly represented as decreasing in contribution rates of rainstorm and heavy storm in flood-season (May to September). During 1961 -2010, North China is characterized by a noticeable reduction in annual extreme precipitation, and an increase in high-temperature days over most parts, as well as more frequent droughts. There are remarkable reductions in annual sunshine duration and mean wind speed, associated with the most significant reduction of mean wind speed in midwestern and eastern parts of Inner Mongolia. Meanwhile, North China has experienced a noticeable decrease/increase in annual mean sanddust/haze days during the study period. However, there is no significant trend in fog days, except a pronounced decrease since the 1990s. 展开更多
关键词 North China TEMPERATURE PRECIPITATION extreme climate events
下载PDF
Effect of surfactants on hydrodynamics characteristics of bubble in shear thinning fluids at low Reynolds number 被引量:1
8
作者 LI Shao-bai FAN Jun-geng +2 位作者 LI Run-dong WANG Lei LUAN Jing-de 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第4期805-811,共7页
In this study,the effects of surfactants on the hydrodynamic characteristics of bubbles in shear-thinning fluids at low Reynolds number(Re<50)are investigated.The bubble terminal velocity and drag coefficient of bu... In this study,the effects of surfactants on the hydrodynamic characteristics of bubbles in shear-thinning fluids at low Reynolds number(Re<50)are investigated.The bubble terminal velocity and drag coefficient of bubble in clean and contaminated carboxymethylcellulose(CMC)solutions are obtained using a high-speed camera for examining differences.The results show that the existence of surfactant could reduce the terminal velocity of bubble at small volume(0.25wt%CMC:<100 mm3;0.50wt%CMC:<110 mm3),attributed to stiffening the bubble interface.However,this negative effect decreases and finally disappears with increasing bubble volume.The drag coefficient curves of the bubble in contaminated CMC solution exhibit behavior similar to that exhibited by a solid sphere at Re<10,indicating that internal circulation flow is absent at the bubble interface as compared to that in clean CMC solution.However,for 10<Re<40,a transition of drag curve from 24/Re to 16/Re in contaminated CMC solution is observed,which is easy at low SDS concentrations and high CMC concentrations. 展开更多
关键词 SURFACTANT single bubble shear thinning fluids VELOCITY drag coefficient
下载PDF
Effect of some operational variables on bubble size in a pilot-scale mechanical flotation machine 被引量:4
9
作者 张炜 J.E.Nesset J.A.Finch 《Journal of Central South University》 SCIE EI CAS 2014年第3期1077-1084,共8页
This work aims to provide a relationship of how the key operational variables of frother type and impeller speed affect the size of bubble (D32). The study was performed using pilot-scale equipment (0.8 m^3) that ... This work aims to provide a relationship of how the key operational variables of frother type and impeller speed affect the size of bubble (D32). The study was performed using pilot-scale equipment (0.8 m^3) that is up to two orders of magnitude larger than equipment used for studies performed to date by others, and incorporated the key process variables of frother type and impeller speed. The results show that each frother family exhibits a unique CCC95-HLB relationship dependent on n (number of C-atoms in alkyl group) and m (number of propylene oxide group). Empirical models were developed to predict CCC95 from HLB associated with other two parameters a and ft. The impeller speed-bubble size tests show that D32 is unaffected by increased impeller tip speed across the range of 4.6 to 9.2 m/s (representing the industrial operating range), although D32 starts to increase below 4.6 m/s. The finding is valid for both coalescing and non-coalescing conditions. The results suggest that the bubble size and bubble size distribution (BSD) being created do not change with increasing impeller speed in the quiescent zone of the flotation. 展开更多
关键词 FLOTATION bubble size operational variables critical coalescence concentration hydrophile-lipophile balance impellerspeed
下载PDF
Analysis of Nonstationary Wind Fluctuations Using the Hilbert-Huang Transform 被引量:1
10
作者 XU Jing-Jing HU Fei 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第5期428-433,共6页
Climatological patterns in wind fluctuations on time scales of 1–10 h are analyzed at a meteorological mast at the Yangmeishan wind farm, Yunnan Province,China, using a 2-yr time series of 10-min wind speed observati... Climatological patterns in wind fluctuations on time scales of 1–10 h are analyzed at a meteorological mast at the Yangmeishan wind farm, Yunnan Province,China, using a 2-yr time series of 10-min wind speed observations. For analyzing the spectral properties of nonstationary wind fluctuations in mountain terrain, the Hilbert-Huang transform(HHT) is applied to investigate climatological patterns between wind variability and several variables including time of year, time of day, wind direction, and pressure tendency. Compared with that for offshore sites, the wind variability at Yangmeishan wind farm has a more distinct diurnal cycle, but the seasonal discrepancies and the differences according to directions are not distinct, and the synoptic influences on wind variability are weaker. There is enhanced variability in spring and winter compared with summer and autumn. For flow from the main direction sector, the maximum wind variability is observed in spring. And the severe wind fluctuations are more common when the pressure tendency is rising. 展开更多
关键词 wind variability spectral analysis Hilbert-Huangtransform atmospheric boundary layer wind power
下载PDF
Daily Variability of Radon Gas in Brazilian Tropics Near Ground Level Surface 被引量:1
11
作者 Inacio Malmonge Martin Marcelo Pego Gomes Bogos Nubar Sismanoglu Nicolas Cruvinel Lindo 《Journal of Environmental Science and Engineering(A)》 2015年第10期516-521,共6页
By monitoring the ionizing radiation from minute to minute in S^o Jos6 dos Campos, SP, Brazil (230 S, 450 W) using Geiger counter, during January to August 2015, it has confirmed the presence of radon gas in these m... By monitoring the ionizing radiation from minute to minute in S^o Jos6 dos Campos, SP, Brazil (230 S, 450 W) using Geiger counter, during January to August 2015, it has confirmed the presence of radon gas in these measures. The observation confirms the existence of a periodicity of 24 hours through the technique (Fast Fourier Transform) applied to the data set, and this cycle can be better visible in longer dry periods. On rainy days or with heavy fog in the region, this periodicity is modified or even disappears. As Geiger do not detect alpha particles due to absorption in the walls of the sensor tube, it measured X and gamma rays coming from the radon gas progeny. Radon gas (222Rn) has a half-life of 19.7 minutes to decays in 214Bi emitting gamma ray energy (45%) with 0.609 MeV which is monitored daily by Geiger. Also 222Rn decays in 26.8 minutes in 214pb giving (37%) with 0.35 MeV and others with less energy. It is confirmed the good performance ofa Geiger tube with LND 712 working with about 500 VDC rated voltage. 展开更多
关键词 GEIGER radon gas ionizing radiation.
下载PDF
Responses of Primary Productivity to Current and Climate Changes in the Mud Area to the Southwest of Cheju Island During the Past 800 Years 被引量:2
12
作者 LIU Yi ZHOU Xin +5 位作者 HUANG Wen WANG Yuhong JIA Nan JI Haoyuan HUANG Yiya SUN Liguang 《Journal of Ocean University of China》 SCIE CAS 2013年第4期605-610,共6页
The biogenic silica (BSi) ,total organic carbon (TOC) ,total nitrogen (TN) and grain size were analyzed with a gravity core (3250-6) collected from the mud area in the north East China Sea.The average deposition rate ... The biogenic silica (BSi) ,total organic carbon (TOC) ,total nitrogen (TN) and grain size were analyzed with a gravity core (3250-6) collected from the mud area in the north East China Sea.The average deposition rate of the upper core was about 0.078cm yr1based on the results of 210Pbex.The mean grain size increased with depth in general.The frequency distribution of grain size showed that two marked changes of deposition environment occurred at 30 cm and 50 cm depths (about 1550 AD and 1300 AD,respectively) .The variations of BSi and TOC indicated two distinct major periods of primary productivity over the past 800 years:a stage of low primary productivity corresponding to weak upwelling and low nutrient input below 30 cm depth (about 1200-1550 AD) ,and a stage of high primary productivity with strong currents and upwelling above 30 cm depth (about 1550-1950 AD) .The stage with high primary productive appeared to be due to the northward-expanded muddy area caused by strong Asian Winter Monsoon and enhanced Yellow Sea Warm Current in winter.In conclusion,the BSi and TOC in the muddy sediments,the symbols of marine primary productivity,can be then used to investigate the evolution history of currents and relative climate change in the offshore areas. 展开更多
关键词 primary productivity biogenic silica muddy area Asian Winter Monsoon Yellow Sea Warm Current
下载PDF
Simulation of Volume and Heat Transport along 26.5°N in the Atlantic
13
作者 MO Hui-Er YU Yong-Qiang 《Atmospheric and Oceanic Science Letters》 2012年第5期373-378,共6页
The observed meridional overtuming circula- tion (MOC) and meridional heat transport (MHT) estimated from the Rapid Climate Change/Meridional Circu- lation and Heat Flux Array (RAPID/MOCHA) at 26.5°N are us... The observed meridional overtuming circula- tion (MOC) and meridional heat transport (MHT) estimated from the Rapid Climate Change/Meridional Circu- lation and Heat Flux Array (RAPID/MOCHA) at 26.5°N are used to evaluate the volume and heat transport in the eddy-resolving model LASG/IAP Climate system Ocean Model (LICOM). The authors find that the Florida Cur- rent transport and upper mid-ocean transport of the model are underestimated against the observations. The simulated variability of MOC and MHT show a high correlation with the observations, exceeding 0.6. Both the simulated and observed MOC and MHT show a significant seasonal variability. According to the power spectrum analysis, LICOM can represent the mesoscale eddy characteristic of the MOC similar to the observation. The model shows a high correlation of 0.58 for the internal upper mid-ocean transport (MO) and a density difference between the western and eastern boundaries, as noted in previous studies. 展开更多
关键词 meridional overtuming circulation merid-ional heat transport VARIABILITY eddy-resolving
下载PDF
Interaction between the atmospheric boundary layer and a standalone wind turbine in Gansu—Part I: Field measurement 被引量:7
14
作者 De Shun Li Tao Guo +6 位作者 Yin Ran Li Jin Sen Hu Zhi Zheng Ye Li Yu Jia Di WenRui Hu RenNian Li 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2018年第9期45-58,共14页
Experiments and numerical simulations of the wake field behind a horizontal-axis wind turbine are carried out to investigate the interaction between the atmospheric boundary layer and a stand-alone wind turbine. The t... Experiments and numerical simulations of the wake field behind a horizontal-axis wind turbine are carried out to investigate the interaction between the atmospheric boundary layer and a stand-alone wind turbine. The tested wind turbine(33 k W) has a rotor diameter of 14.8 m and hub height of 15.4 m. An anti-icing digital Sonic wind meter, an atmospheric pressure sensor, and a temperature and humidity sensor are installed in the upstream wind measurement mast. Wake velocity is measured by three US CSAT3 ultrasonic anemometers. To reflect the characteristics of the whole flow field, numerical simulations are performed through large eddy simulation(LES) and with the actuator line model. The experimental results show that the axial velocity deficit rate ranges from 32.18% to 63.22% at the three measuring points. Meanwhile, the time-frequency characteristics of the axial velocities at the left and right measuring points are different. Moreover, the average axial and lateral velocity deficit of the right measuring point is greater than that of the left measuring point. The turbulent kinetic energy(TKE) at the middle and right measuring points exhibit a periodic variation, and the vortex sheet-pass frequency is mostly similar to the rotational frequency of the rotor. However, this feature is not obvious for the left measuring point. Meanwhile, the power spectra of the vertical velocity fluctuation show the slope of-1, and those of lateral and axial velocity fluctuations show slopes of-1 and-5/3, respectively.However, the inertial subranges of axial velocity fluctuation at the left, middle, and right measuring points occur at 4, 7, and7 Hz, respectively. The above conclusion fully illustrates the asymmetry of the left and right measuring points. The experimental data and numerical simulation results collectively indicate that the wake is deflected to the right under the influence of lateral force. Therefore, wake asymmetry can be mainly attributed to the lateral force exerted by the wind turbine on the fluid. 展开更多
关键词 wind power atmospheric turbulence effects velocity measurements turbulent wakes large-eddy simulations
原文传递
Numerical Study on the Influence Mechanism of Inlet Distortion on the Stall Margin in a Transonic Axial Rotor 被引量:3
15
作者 Scott C.Morris 《Journal of Thermal Science》 SCIE EI CAS CSCD 2012年第3期209-214,共6页
A numerical study is conducted to investigate the influence of inlet flow condition on tip leakage flow (TLF) and stall margin in a transonic axial rotor.A commercial software package FLUENT,is used in the simulation.... A numerical study is conducted to investigate the influence of inlet flow condition on tip leakage flow (TLF) and stall margin in a transonic axial rotor.A commercial software package FLUENT,is used in the simulation.The rotor investigated in this paper is ND_TAC rotor,which is the rotor of one-stage transonic compressor in the University of Notre Dame.Three varied inlet flow conditions are simulated.The inlet boundary condition with hub distortion provides higher axial velocity for the incoming flow near tip region than that for the clean inflow,while the incoming main flow possesses lower axial velocity near the tip region at tip distortion inlet boundary condition.Among the total pressure ratio curves for the three inlet flow conditions,it is found that the hub dis-torted inlet boundary condition improves the stall margin,while the tip distorted inlet boundary condition dete-riorates compressor stability.The axial location of interface between tip leakage flow (TLF) and incoming main flow (MF) in the tip gap and the axial momentum ratio of TLF to MF are further examined.It is demonstrated that the axial momentum balance is the mechanism for interface movement.The hub distorted inflow could de-crease the axial momentum ratio,suppress the movement of the interface between TLF and MF towards blade leading edge plane and thus enhance compressor stability. 展开更多
关键词 Inlet distortion tip leakage flow stall margin axial momentum balance
原文传递
Holocene peatland development and vegetation changes in the Zoige Basin, eastern Tibetan Plateau 被引量:6
16
作者 SUN XiaoHong ZHAO Yan LI Quan 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第10期1826-1837,共12页
Peat sediments and peatland evolution process offer abundant clues into the history of vegetation and climate changes.In order to reconstruct Holocene peatland, vegetation and climate changes on eastern Tibetan Platea... Peat sediments and peatland evolution process offer abundant clues into the history of vegetation and climate changes.In order to reconstruct Holocene peatland, vegetation and climate changes on eastern Tibetan Plateau, we conducted analyses of fossil pollen, loss-on-ignition, and carbon accumulation rate on one peat core from Zoige Basin. Our results show local peatland initiated at 10.3 ka, thrived in the early-mid Holocene, and then began to degrade. Throughout the Holocene, Zoige Basin was dominated by alpine meadow. Coniferous forest on montane regions expanded for several times during 10.5–4.6ka, and then dramatically retreated. Results of peatland property, principal component analysis on fossil pollen suggested the climate maintained warm/wet during 10–5.5 ka, and became relatively cold/dry in the late Holocene. Rapid degradation of peatland, retreat of coniferous forest and climatic drought/cooling occurred at 10.2–10, 9.7–9.5, 8.7–8.5, 7.7–7.4, 6.4–6, 5.5–5.2,4.8–4.5, 4–3.6, 3.1–2.7, 1.4–1.2 and 0.8–0.6 ka. The long-term variations of Holocene climate and vegetation on eastern Tibetan Plateau could be attributed to changes in insolation-driven temperature and Asian Summer Monsoon intensity, while those rapid centennial changes were probably triggered by abrupt monsoon failures and temperature anomalies in the high northern latitudes. 展开更多
关键词 Holocene Climate change Fossil pollen Peatland Tibetan Plateau
原文传递
A numerical study of counterflow diffusion flames of methane/air at various pressures 被引量:4
17
作者 YU Ji MENG Hua 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第3期615-624,共10页
A numerical study of the counterflow diffusion flames of methane/air at both subcritical and supercritical pressures,which have very important applications in the air-breathing rocket and advanced gas turbine engines,... A numerical study of the counterflow diffusion flames of methane/air at both subcritical and supercritical pressures,which have very important applications in the air-breathing rocket and advanced gas turbine engines,is conducted to obtain fundamental understanding of the flame characteristics.The analysis is based on a general mathematical formulation and accommodates a unified treatment of general fluids thermodynamics and accurate calculations of thermophysical properties.Results reveal that the maximum flame temperature occurs on the fuel-rich side for low-pressure conditions and shifts toward the stoichiometric position when the pressure increases.The maximum flame temperature increases with an increasing pressure,but decreases with an increasing strain rate.The flame width is inversely proportional to the square root of the product of the pressure and strain rate as■■1 p·a2/1.The total heat release rate varies with the pressure and strain rate in a relationship of Q release ■(p·a)0.518.An increased pressure leads to a slightly more complete combustion process near the stoichiometric position,but its effect on NO production is minor.Under the test conditions,variations of the strain rate have significant impacts on the formation of major pollutants.An increased strain rate leads to the decreased mole fraction of CO in the fuel-rich region and significantly reduced NO near the stoichiometric position. 展开更多
关键词 supercritical pressure non-premixed flame turbulent combustion strain rate mixture fraction
原文传递
Numerical Modelling of the Aeroelastic Behaviour and Variable Loads for the Turbine Stage in 3D Transonic Flow
18
作者 V.I. GNESIN L.V. KOLODYAZHNAYA R. RZADKOWSKI 《Journal of Thermal Science》 SCIE EI CAS CSCD 2005年第3期236-241,共6页
In this study presented the algorithm proposed involves the coupled solution of 3-D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without se... In this study presented the algorithm proposed involves the coupled solution of 3-D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without separating the outer and inner flow fluctuations. The partially integrated method involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from one domain is used as a boundary condition for the other domain. 3-D transonic gas flow through the stator and rotor blades in relative motion with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite-volume difference scheme of Godunov-Kolgan. The structural analysis uses the modal approach and a 3-D finite element model of a blade. A calculation has been done for the last stage of the steam turbine, under design and off-design regimes. It is shown that the amplitude-frequency spectrum of blade oscillations contains the high frequency harmonics, corresponding to the rotor moving past one stator blade pitch, and low frequency harmonics caused by blade oscillations and flow nonuniformity downstream from the blade row; moreover, the spectrum involves the harmonics which are not multiples of the rotation frequency. 展开更多
关键词 turbine stage 3D unsteady flow blade oscillations
原文传递
Rates of temperature change in China during the past 2000 years 被引量:18
19
作者 GE QuanSheng ZHANG XueZhen +1 位作者 HAO ZhiXin ZHENG JingYun 《Science China Earth Sciences》 SCIE EI CAS 2011年第11期1627-1634,共8页
Using 24 proxy temperature series, the rates of temperature change in China are analyzed at the 30- to 100-year scales for the past 2000 years and at the 10-year scale for the past 500 years. The results show that, at... Using 24 proxy temperature series, the rates of temperature change in China are analyzed at the 30- to 100-year scales for the past 2000 years and at the 10-year scale for the past 500 years. The results show that, at the 100-year scale, the warming rate for the whole of China in the 20th century was only 0.6±1.6℃/100 a (interval at the 95% confidence level, which is used here- after), while the peak warming rate for the period from the Little Ice Age (LIA) to the 20th century reached 1.1_+1.2~C/100 a, which was the greatest in the past 500 years and probably the past 2000 years. At the 30-year scale, warming in the 20th century was quite notable, but the peak rate was still less than rates for previous periods, such as the rapid warming from the LIA to the 20th century and from the 270s-290s to 300s-320s. At the 10-year scale, the warming in the late 20th century was very evident, but it might not be unusual in the context of warming over the past 500 years. The exact timing, duration and magnitude of the warming peaks varied from region to region at all scales. The peak rates of the 100-year scale warming in the AD 180s-350s in northeastern China as well as those in the 260s-410s and 500s-660s in Tibet were all greater than those from the mid-19th to 20th century. Meanwhile, the rates of the most rapid cooling at scales of 30 to 100 years in the LIA were promi-nent, but they were also not unprecedented in the last 2000 years. At the 10-year scale, for the whole of China, the most rapid decadal cooling in the 20th century was from the 1940s to 1950s with a rate of -0.3±0.6℃/10 a, which was similar to rates for periods before the 20th century. For all regions, the rates of most rapid cooling in the 20th century were all less than those for previous periods. 展开更多
关键词 China past 2000 years rates of temperature change
原文传递
Improvement of the Pulsed Photothermal Technique for the Measurement of the Convective Heat Transfer Coefficient 被引量:4
20
作者 M.Rebay A.Arfaoui +2 位作者 G.Mebarki R.Ben Maad J.Padet 《Journal of Thermal Science》 SCIE EI CAS CSCD 2010年第4期357-363,共7页
The present study concerns the measurement of the convective heat transfer coefficient on the solid-fluid interface by the pulsed photothermal method.This non-intrusive technique is apphed for the measurement of the l... The present study concerns the measurement of the convective heat transfer coefficient on the solid-fluid interface by the pulsed photothermal method.This non-intrusive technique is apphed for the measurement of the local heat transfer coefficients in cooling of a rectangular slab that simulates an electronic component.The heat transfer coefficient is deduced from the evolution of the transient temperature induced by a sudden deposit of a luminous energy on the front face of the slab.In order to draw up the heat transfer cartography by a non-destructive tool, the infrared thermography has been used.Two inverse techniques for the identification of the heat transfer coefficient are presented here.The first one is based on the assumption that heat transfer coefficient remains constant during the pulsed experiment,and the second one considered it variable in space and time.The temporal and spatial evolutions are expressed as a constant heat transfer coefficient(h_0)multiplied by a function of time and space f(x,t).The function f is deduced from the resolution of the conjugated convection-conduction problem,by a control volume technique for the case of thermally thick sample.The results are given for different air velocities and deflection angles of the flow. 展开更多
关键词 pulsed method infrared thermography convective heat transfer inverse method.
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部