为应用方便直观的电路方法进行双馈风电并网系统故障分析和短路计算,针对电网故障后转子侧变流器(rotor side converter,RSC)控制方式提出一种双馈风机(doubly-fed induction generator,DFIG)序网等值电路。故障后RSC不间断控制的运行...为应用方便直观的电路方法进行双馈风电并网系统故障分析和短路计算,针对电网故障后转子侧变流器(rotor side converter,RSC)控制方式提出一种双馈风机(doubly-fed induction generator,DFIG)序网等值电路。故障后RSC不间断控制的运行方式下,DFIG定子短路电流中含有幅值稳定的工频正负序分量、2个衰减速度不同且频率接近工频的正序分量以及衰减直流分量。分别推导了各交流成分对应的序网等值电路,其中,稳定工频正序分量对应的等值电路可用等值电势及正序阻抗来表示;稳定工频负序分量对应的等值电路用无源的负序阻抗来表示;而衰减交流分量可用受控电流源来描述。利用所提DFIG等值电路,应用传统序网分析方法即可方便进行短路计算,不需仿真就能获得双馈风机并网系统中各处的短路电流。通过PSCAD仿真验证了所提等值电路和解析算法的有效性。展开更多
基于二极管整流器的高压直流DR-HVDC(diode-rectifer-based high voltage direct current)输电系统是一种很有前景的海上风电低成本接入方案,它可将风能从偏远的海上风电场输送到陆上电力系统。然而随着海上DR-HVDC系统的不断增多,可能...基于二极管整流器的高压直流DR-HVDC(diode-rectifer-based high voltage direct current)输电系统是一种很有前景的海上风电低成本接入方案,它可将风能从偏远的海上风电场输送到陆上电力系统。然而随着海上DR-HVDC系统的不断增多,可能会导致风机WT(wind turbine)的变流器控制难度增大,系统稳定性变差。基于此,提出了一种适用于DR-HVDC连接海上WT变流器的新型电网形成控制方法。该方法采用2个正序控制回路来调节WTs的输出有功功率,并维持海上交流电网的频率和电压,其中第一个控制器可将每台WT的有功功率误差调节为电压角偏差,从而造成系统频率偏差;第二个控制器通过调整WT的交流电压幅值以抵消频率偏差。变流器内部电流控制回路用于限制故障电流,并消除系统中的高频谐振。最后,通过故障穿越、WT功率变化、无功扰动和WTs停机4个方面的电磁暂态仿真,验证了所提控制方法的有效性和优越性。展开更多
文摘为应用方便直观的电路方法进行双馈风电并网系统故障分析和短路计算,针对电网故障后转子侧变流器(rotor side converter,RSC)控制方式提出一种双馈风机(doubly-fed induction generator,DFIG)序网等值电路。故障后RSC不间断控制的运行方式下,DFIG定子短路电流中含有幅值稳定的工频正负序分量、2个衰减速度不同且频率接近工频的正序分量以及衰减直流分量。分别推导了各交流成分对应的序网等值电路,其中,稳定工频正序分量对应的等值电路可用等值电势及正序阻抗来表示;稳定工频负序分量对应的等值电路用无源的负序阻抗来表示;而衰减交流分量可用受控电流源来描述。利用所提DFIG等值电路,应用传统序网分析方法即可方便进行短路计算,不需仿真就能获得双馈风机并网系统中各处的短路电流。通过PSCAD仿真验证了所提等值电路和解析算法的有效性。
文摘基于二极管整流器的高压直流DR-HVDC(diode-rectifer-based high voltage direct current)输电系统是一种很有前景的海上风电低成本接入方案,它可将风能从偏远的海上风电场输送到陆上电力系统。然而随着海上DR-HVDC系统的不断增多,可能会导致风机WT(wind turbine)的变流器控制难度增大,系统稳定性变差。基于此,提出了一种适用于DR-HVDC连接海上WT变流器的新型电网形成控制方法。该方法采用2个正序控制回路来调节WTs的输出有功功率,并维持海上交流电网的频率和电压,其中第一个控制器可将每台WT的有功功率误差调节为电压角偏差,从而造成系统频率偏差;第二个控制器通过调整WT的交流电压幅值以抵消频率偏差。变流器内部电流控制回路用于限制故障电流,并消除系统中的高频谐振。最后,通过故障穿越、WT功率变化、无功扰动和WTs停机4个方面的电磁暂态仿真,验证了所提控制方法的有效性和优越性。