order to investigate the morphological response of freshwater green algae to elevated CO2 concentration, Chlamydomonas reinhardtii Dang and Scenedesmus obliquus Kutz were cultured with enriched CO2, and their microstr...order to investigate the morphological response of freshwater green algae to elevated CO2 concentration, Chlamydomonas reinhardtii Dang and Scenedesmus obliquus Kutz were cultured with enriched CO2, and their microstructure and ultrastructure were examined by microscopy and electron microscopy. The effect of CO2 enrichment to 186 mumol/L, was insignificant on the shape and size of C. reinhardtii, but significant in reducing the volume of S. obliquus. High-CO2 increased the amount of chloroplast. The pyrenoids occurred in low-CO2-grown cells but not in high-CO2-grown ones and more starch granules were observed in the former.展开更多
The rheological behavior of low consistency thermomechanical pulp of Chinese fir harvested by intermediate thinning was analyzed. The results show that the apparent viscosity of pulp changed along with the beating deg...The rheological behavior of low consistency thermomechanical pulp of Chinese fir harvested by intermediate thinning was analyzed. The results show that the apparent viscosity of pulp changed along with the beating degree, pulp consistency and shearing velocity. With the increasing of pulp consistency, the apparent viscosity of pulp increased gradually. Beating degree of pulp had an effect on microstructure of pulp. The apparent viscosity of pulp declined as beating degree of pulp increased, and the apparent viscosity of pulp fell along with the shearing velocity increasing. Based on the results, the rheological models are set up. The models showed that the fluid types of the low consistency pulp could be described as pseudoplastics fluids (non-Newtonian fluids).展开更多
Based on the principle of chemical engineering in the multisubject field—drug delivery, the release kinetics of the slab monolithic matrix with an initially linear concentration distribution is studied in this paper....Based on the principle of chemical engineering in the multisubject field—drug delivery, the release kinetics of the slab monolithic matrix with an initially linear concentration distribution is studied in this paper. It can be used to describe the later stage when drug loading is above its solubility limit. A comprehensive model is proposed and the generalized solutions are acquired by Laplace transformation, from which a special case, i.e. a perfect sink has been deduced. According to the derived equations, the concentration profiles in the matrix has been computed and illustrated and the effect of volume of extraction medium on release has been investigated.展开更多
Macronutrients (N, P, K, Ca, Mg, and S) in litter of three primarily spruce (Picea purpurea Masters) (SF), fir (Abies faxoniana Rehder & E. H. Wilson) (FF), and birch (Betula platyphylla Sukaczev) (BF) ...Macronutrients (N, P, K, Ca, Mg, and S) in litter of three primarily spruce (Picea purpurea Masters) (SF), fir (Abies faxoniana Rehder & E. H. Wilson) (FF), and birch (Betula platyphylla Sukaczev) (BF) subalpine forests in western China were measured to understand the monthly variations in litter nutrient concentrations and annual and monthly nutrient returns via litteffall. Nutrient concentration in litter showed the rank order of Ca 〉 N 〉 Mg 〉 K 〉 S 〉 P. Monthly variations in nutrient concentrations were greater in leaf litter (LL) than other litter components. The highest and lowest concentrations of N, P, K, and S in LL were found in the growing season and the nongrowing season, respectively, but Ca and Mg were the opposite. Nutrient returns via litterfall showed a marked monthly pattern with a major peak in October and one or two small peaks in February and/or May, varying with the element and stand type, but no marked monthly variations in nutrient returns via woody litter, reproductive litter, except in May for the BF, and moss litter. Not only litter production but also nutrient concentration controlled the annual nutrient return and the monthly nutrient return pattern. The monthly patterns of the nutrient concentration and return were of ecological importance for nutrient cycling and plant growth in the subalpine forest ecosystems.展开更多
The effects of strain and chloride concentration on pitting susceptibility for type 304 stainless steel were studied in situ using the electrochemical technology under constant strain. The impact factor fc was brought...The effects of strain and chloride concentration on pitting susceptibility for type 304 stainless steel were studied in situ using the electrochemical technology under constant strain. The impact factor fc was brought forward to value the effect of strain on pitting. The pitting behaviors of type 304 stainless steel in various chloride concentrations under the strain levels 0%, 10%, and 30% were investigated. Potentiostatic polarization technology was used to study how the chloride concentration affected corrosion current density. The results indicated that fc increased substantially and pitting potential varied remarkably when chloride concentration was over 90 mg.L . Under the three levels of strain mentioned above, when chloride concentration was below 463 mg.L^-1,121 mg.L^-1, and 98 mg.L^-1 respectively, the pitting potential shifted towards positivity and, the passive film became more stable. When the strain was below 10%, the pitting susceptibility of type 304 stainless steel varied greatly as strain increased, whereas the susceptibility only changed a little when the strain was over 10%.展开更多
Based on the concentrations of CO2,PM2.5 and PM1.0,and conventional meteorological observation data from 2016 to 2018 at Taiyuan station,which belongs to the Shanxi greenhouse gas observation network,the CO2 concentra...Based on the concentrations of CO2,PM2.5 and PM1.0,and conventional meteorological observation data from 2016 to 2018 at Taiyuan station,which belongs to the Shanxi greenhouse gas observation network,the CO2 concentration monthly and daily distribution characteristics,the weekend effect,and the variation characteristics on haze days and non-haze days,are analyzed.By using the Hybrid Single-Particle Lagrangian Integrated Trajectorymodel(backward trajectory model)and surface wind data,the transmission characteristics of atmospheric CO2 in Taiyuan are studied in various seasons.The results show that,in Taiyuan,the CO2 mole fraction in autumn and winter is higher than that in spring and summer,and on haze days is higher than that on non-haze days.The diurnal variation characteristic of CO2mole fraction in each season is‘single peak and single valley’with the peak value around 0700(hereafter refers to Beijing Time)and the valley value around 1600.The CO2 mole fraction on workdays is slightly higher than that on non-workdays and obviously different around 0800 of the early peak.Horizontal diffusion can reduce the CO2 mole fraction,while breezy weather is not beneficial to CO2 diffusion.The wind direction and speed in the upper levels are different from those near the surface,and the close air masses in the southwest–west–northwest sector raise the CO2 concentration in Taiyuan obviously.This indicates that the CO2 in Taiyuan is mainly contributed by local sources.展开更多
In order to investigate the effect of variation in the distribution of gas on explosion propagation characteristics in coal mines, experiments were carried out in two different channels with variation in gas concentra...In order to investigate the effect of variation in the distribution of gas on explosion propagation characteristics in coal mines, experiments were carried out in two different channels with variation in gas concentration and geometry. Flame and pressure transducers were used to track the explosion front velocity. The flame speed (Sf) showed a slight downward trend while the methane concentration varied from 10% to 3% in the experimental channel. The peak overpressure (Pmax) dropped dramatically when compared with normal conditions. As well, the values of Pmax and Sf decreased when the methane concentration dropped from 8% to 6%. The flame speed in the channel, connected to a cylinder with a length varying from 0.5 to 2 m, was greater than that in the normal channel. The peak overpressure was also higher than that under normal conditions because of a higher flame speed and stronger pressure piling up. The values of Pmax and Sf increased with an increase in cylinder length. The research results indicate that damage caused by explosions can be reduced by decreasing the gas concentration, which should be immediately detected in roadways with large cross-sections because of the possibility of greater destruction caused by more serious explosions.展开更多
High-accuracy continuous measurements of atmospheric concentrations of CO2 were made from May 2016 to December 2017 using the Picarro G2301 analyzer at Xinglong station(40°24′N,117°30′E,940 MSL),150 km nor...High-accuracy continuous measurements of atmospheric concentrations of CO2 were made from May 2016 to December 2017 using the Picarro G2301 analyzer at Xinglong station(40°24′N,117°30′E,940 MSL),150 km northeast of Beijing.The near-ground CO2 measurements were calibrated by standards based on WMO procedures.The regional background measurements were ltered by the robust extraction of baseline signal method to study the seasonal and diurnal cycles.The regional background CO2 concentrations were low in summer.The maximum diffierence between the local sources and regional background CO2 concentrations occurred in summer and autumn,indicating a strong in uence from local sources.Cluster analysis and potential source contribution function analysis showed that the long-distance transport of anthropogenic emissions in the Beijing Tianjin Hebei metropolitan area in uenced the CO2 concentrations in Xinglong,espe-cially in summer.The diurnal variation of CO2 was mainly in uenced by the various vertical transport conditions of the tropospheric atmosphere in a day.展开更多
Achieving water purity in Poyang Lake has become a major concern in recent years, thus appropriate evaluation of spatial and temporal water quality variations has become essential. Variations in 11 water quality param...Achieving water purity in Poyang Lake has become a major concern in recent years, thus appropriate evaluation of spatial and temporal water quality variations has become essential. Variations in 11 water quality parameters from 15 sampling sites in Poyang Lake were investigated from 2009 to 2012. An integrative fuzzy variable evaluation(IFVE) model based on fuzzy theory and variable weights was developed to measure variations in water quality. Results showed that: 1) only chlorophyll-a concentration and Secchi depth differed significantly among the 15 sampling sites(P < 0.01), whereas the 11 water quality parameters under investigation differed significantly throughout the seasons(P < 0.01). The annual variations of all water quality variables except for temperature, electrical conductivity, suspended solids and total phosphorus were considerable(P < 0.05). 2) The IFVE model was reasonable and flexible in evaluating water quality status and any possible ′bucket effect′. The model fully considered the influences of extremely poor indices on overall water quality. 3) A spatial analysis indicated that anthropogenic activities(particularly industrial sewage and dredging) and lake bed topography might directly affect water quality in Poyang Lake. Meanwhile, hydrological status and sewage discharged into the lake might be responsible for seasonal water quality variations.展开更多
It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with ...It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with rare investigation of forest carbon stocks influ- enced by forest management practices and climate change at regional scale. In this study, a general integrative approach was used to simulate spatial and temporal variations of woody biomass and harvested biomass of forest in China during the 21st century under dif- ferent scenarios of climate and CO2 concentration changes and management tasks by coupling Integrated Terrestrial Ecosystem Carbon budget (InTEC) model with Global Forest Model (G4M). The results showed that forest management practices have more predominant effects on forest stem stocking biomass than climate and CO2 concentration change. Meanwhile, the concurrent future changes in cli- mate and CO2 concentration will enhance the amounts of stem stocking biomass in forests of China by 12%-23% during 2001-2100 relative to that with climate change only. The task for maximizing stem stocking biomass will dramatically enhance the stem stocking biomass from 2001~100, while the task for maximum average increment will result in an increment of stem stocking biomass before 2050 then decline. The difference of woody biomass responding to forest management tasks was owing to the current age structure of forests in China. Meanwhile, the sensitivity of long-term woody biomass to management practices for different forest types (coniferous forest, mixed forest and deciduous forest) under changing climate and CO2 concentration was also analyzed. In addition, longer rotation length under future climate change and rising CO2 concentration scenario will dramatically increase the woody biomass of China during 2001~100. Therefore, our estimation indicated that taking the role of forest management in the carbon cycle into the consideration at regional or national level is very important to project the forest carbon sequestration under future climate change and rising atmospheric CO2 concentration.展开更多
In light of the possibility of reignition when unsealing the closed fire zones, the occurrence of reignition was simulated by a home-made experimental device, hydrogen variety rule from combustion to unsealing was ana...In light of the possibility of reignition when unsealing the closed fire zones, the occurrence of reignition was simulated by a home-made experimental device, hydrogen variety rule from combustion to unsealing was analyzed, the three-stage generation model of hydrogen during reignition in fire zone was put forward and the probability that hydrogen was taken as an indicator gas was discussed. The results show that: when fire zone is ready to unseal, which is filled with hydrogen at a high concentration, it is more prone to reignite.展开更多
In this work, sesamin and sesamolin is separated and purified by SMB (simulated moving bed) chromatography. Purity of sesamin and sesamolin can reach 99.2% and 99.9 %, and they can be recovered by 99.9% and 99.4%, r...In this work, sesamin and sesamolin is separated and purified by SMB (simulated moving bed) chromatography. Purity of sesamin and sesamolin can reach 99.2% and 99.9 %, and they can be recovered by 99.9% and 99.4%, respectively. Concentrations of the extract and raffinate was monitored and periodical change of the concentration was observed on experiment. Effects of non-linear adsorption, dead volume, and temperature on the separation are reviewed by the triangle theory to explain the periodical change of concentration. It is found that dead volume has little effect, and temperature fluctuation significantly affects thc separation by SMB. The temperature seriously affects the robust operation of SMB due to the change of Henry's constant, which will change the selectivity and restrain the productivity. Although the productivity in this study is only 0.0416 g/L-hr, the cost of the stationary phase used in this study is much lower than that of packed in analytical column. By using this stationary phase, the authors are still able to separate the mixture of sesamin and sesmolin. This will economically attract attention for the application of SMB to purify bioactive compounds on developing botanical drugs.展开更多
Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary....Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary. Concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the Yellow River during dry seasons were higher than those during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment desorption processes in low salinity regions. In contrast to DOC, the effective concen- trations of DIC were 10% lower than the DIC measured at freshwater end, and the loss of DIC was caused by CaCO3 precipitation in low salinity region, Particulate organic carbon (POC) and particulate inorganic carbon (PIC) contents of the particles stabilized to constant values (0.5%:t:0.05% and 1.8%--0.2%, respectively) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations. A rapid drop of PIC and rise of POC occurred simultaneously outside the TMZ due to an intense dilution of riv- erine inorganic-rich particles being transported into a pool of aquatic organic-poor particles outside the TMZ. Annually, the Yellow River transported 6.95× 10^5 t of DIC, 0.64× 10^5 t of DOC, 78.58× 10^5 t of PIC and 2.29× 10^5 t of POC to the sea.展开更多
The application of spray towers for CO2 capture is a development trend in recent years. However, most of the previous jobs were conducted in a cylindrical tower by using a single spray nozzle, whose configuration and ...The application of spray towers for CO2 capture is a development trend in recent years. However, most of the previous jobs were conducted in a cylindrical tower by using a single spray nozzle, whose configuration and performance is not good enough for industrial application. To solve this problem, the present work proposed a diameter-varying spray tower and a new spray mode of dual-nozzle opposed impinging spray to enhance the heat and mass transfer of CO2 absorption process. Experiments were performed to investigate the mass transfer performance (in terms of the CO2 removal rate (η) and the overall mass transfer coefficient (KGae)) of the improved spray tower under various operating conditions. Experimental results showed that the liquid to gas ratio and mole ratio of MEA to C02 are major factors, which affect the absorption performance and the maximums of η and KGae that are 94.0% and 0.574 kmol. m^-3·h^-1·kPa^-1, respectively, under the experimental conditions. Furthermore, new correlations to predict the mass transfer coefficient of the proposed spray tower are developed in various CO2 concentrations with a Pearson Correlation Coefficient over 90%.展开更多
The annual series of δ13C were measured in tree rings of three Cryptomeria fortunei disks (OF-1, OF-2, and OF- 3) collected from West Tianmu Mountain, Zhejiang Province, China, according to cross-dating tree ring a...The annual series of δ13C were measured in tree rings of three Cryptomeria fortunei disks (OF-1, OF-2, and OF- 3) collected from West Tianmu Mountain, Zhejiang Province, China, according to cross-dating tree ring ages. There was no obvious decreasing trend of the δ13C annual time series of CF-2 before 1835. However, from 1835 to 1982 the three tree ring δ13C annual series exhibited similar decreasing trends that were significantly (P ≤ 0.001) correlated. The distribution characteristics of a scatter diagram between estimated δ13C series of CF-2 from modeling and the atmospheric CO2 concentration extracted from the Law Dome ice core from 1840 to 1978 were analyzed and a curvilinear regression equation for reconstructing atmospheric CO2 concentration was established with R2 = 0.98. Also, a test of independent samples indicated that between 1685 and 1839 the reconstructed atmospheric CO2 concentration .using the δ13C series of CF-2 had a close relationship with the Law Dome and Siple ice cores, with a standard deviation of 1.98. The general increasing trend of the reconstructed atmospheric CO2 concentration closely reflected the 10ng-term variation of atmospheric CO2 concentration recorded both before and after the Industrial Revolution. Between 1685 and 1840 the evaluated atmospheric CO2 concentration was stable, but after 1840 it exhibited a rapid increase. Given a longer δ13C annual time series of tree rings, it was feasible to rebuild a representative time series to describe the atmospheric CO2 concentration for an earlier period and for years that were not in the ice core record.展开更多
文摘order to investigate the morphological response of freshwater green algae to elevated CO2 concentration, Chlamydomonas reinhardtii Dang and Scenedesmus obliquus Kutz were cultured with enriched CO2, and their microstructure and ultrastructure were examined by microscopy and electron microscopy. The effect of CO2 enrichment to 186 mumol/L, was insignificant on the shape and size of C. reinhardtii, but significant in reducing the volume of S. obliquus. High-CO2 increased the amount of chloroplast. The pyrenoids occurred in low-CO2-grown cells but not in high-CO2-grown ones and more starch granules were observed in the former.
基金This study was sponsored by the Research Funding for Outstanding Young University Faculty of China Ministry of Education (No. 2001-39), Fujian Provincial Innovation Fundation for Young Science and Technology Talents (No. 2004J012), and the National Natural Science Funda-tion of China (No. 30571461)
文摘The rheological behavior of low consistency thermomechanical pulp of Chinese fir harvested by intermediate thinning was analyzed. The results show that the apparent viscosity of pulp changed along with the beating degree, pulp consistency and shearing velocity. With the increasing of pulp consistency, the apparent viscosity of pulp increased gradually. Beating degree of pulp had an effect on microstructure of pulp. The apparent viscosity of pulp declined as beating degree of pulp increased, and the apparent viscosity of pulp fell along with the shearing velocity increasing. Based on the results, the rheological models are set up. The models showed that the fluid types of the low consistency pulp could be described as pseudoplastics fluids (non-Newtonian fluids).
文摘Based on the principle of chemical engineering in the multisubject field—drug delivery, the release kinetics of the slab monolithic matrix with an initially linear concentration distribution is studied in this paper. It can be used to describe the later stage when drug loading is above its solubility limit. A comprehensive model is proposed and the generalized solutions are acquired by Laplace transformation, from which a special case, i.e. a perfect sink has been deduced. According to the derived equations, the concentration profiles in the matrix has been computed and illustrated and the effect of volume of extraction medium on release has been investigated.
基金Project supported by the National Natural Science Foundation of China (Nos. 30471378, 90202010 and 30211130504)the Applied and Basic Research Program of Sichuan Province, and the Talent-Recruiting Program of Sichuan Agricultural University
文摘Macronutrients (N, P, K, Ca, Mg, and S) in litter of three primarily spruce (Picea purpurea Masters) (SF), fir (Abies faxoniana Rehder & E. H. Wilson) (FF), and birch (Betula platyphylla Sukaczev) (BF) subalpine forests in western China were measured to understand the monthly variations in litter nutrient concentrations and annual and monthly nutrient returns via litteffall. Nutrient concentration in litter showed the rank order of Ca 〉 N 〉 Mg 〉 K 〉 S 〉 P. Monthly variations in nutrient concentrations were greater in leaf litter (LL) than other litter components. The highest and lowest concentrations of N, P, K, and S in LL were found in the growing season and the nongrowing season, respectively, but Ca and Mg were the opposite. Nutrient returns via litterfall showed a marked monthly pattern with a major peak in October and one or two small peaks in February and/or May, varying with the element and stand type, but no marked monthly variations in nutrient returns via woody litter, reproductive litter, except in May for the BF, and moss litter. Not only litter production but also nutrient concentration controlled the annual nutrient return and the monthly nutrient return pattern. The monthly patterns of the nutrient concentration and return were of ecological importance for nutrient cycling and plant growth in the subalpine forest ecosystems.
文摘The effects of strain and chloride concentration on pitting susceptibility for type 304 stainless steel were studied in situ using the electrochemical technology under constant strain. The impact factor fc was brought forward to value the effect of strain on pitting. The pitting behaviors of type 304 stainless steel in various chloride concentrations under the strain levels 0%, 10%, and 30% were investigated. Potentiostatic polarization technology was used to study how the chloride concentration affected corrosion current density. The results indicated that fc increased substantially and pitting potential varied remarkably when chloride concentration was over 90 mg.L . Under the three levels of strain mentioned above, when chloride concentration was below 463 mg.L^-1,121 mg.L^-1, and 98 mg.L^-1 respectively, the pitting potential shifted towards positivity and, the passive film became more stable. When the strain was below 10%, the pitting susceptibility of type 304 stainless steel varied greatly as strain increased, whereas the susceptibility only changed a little when the strain was over 10%.
基金This paper was supported by the Key Research and Development Project of Shanxi Province[grant number 201803D31220]the General Program of Shanxi Provincial Meteorological Bureau[grant numbers SXKMSDW20205214 and SXKQNDW20205241].
文摘Based on the concentrations of CO2,PM2.5 and PM1.0,and conventional meteorological observation data from 2016 to 2018 at Taiyuan station,which belongs to the Shanxi greenhouse gas observation network,the CO2 concentration monthly and daily distribution characteristics,the weekend effect,and the variation characteristics on haze days and non-haze days,are analyzed.By using the Hybrid Single-Particle Lagrangian Integrated Trajectorymodel(backward trajectory model)and surface wind data,the transmission characteristics of atmospheric CO2 in Taiyuan are studied in various seasons.The results show that,in Taiyuan,the CO2 mole fraction in autumn and winter is higher than that in spring and summer,and on haze days is higher than that on non-haze days.The diurnal variation characteristic of CO2mole fraction in each season is‘single peak and single valley’with the peak value around 0700(hereafter refers to Beijing Time)and the valley value around 1600.The CO2 mole fraction on workdays is slightly higher than that on non-workdays and obviously different around 0800 of the early peak.Horizontal diffusion can reduce the CO2 mole fraction,while breezy weather is not beneficial to CO2 diffusion.The wind direction and speed in the upper levels are different from those near the surface,and the close air masses in the southwest–west–northwest sector raise the CO2 concentration in Taiyuan obviously.This indicates that the CO2 in Taiyuan is mainly contributed by local sources.
基金provided by the National Natural Science Foundation of China (No.50574093)the Key Program of the National Nature Science of China (No.50534090)+2 种基金the National Basic Research and Development Program of China (No.2005CB221506)the National Science Foundation for Young Scholars of China (No.50804048)the National Key Technology Research and Development Program (Nos.2006BAK03B04 and 2007 BAK29B01)
文摘In order to investigate the effect of variation in the distribution of gas on explosion propagation characteristics in coal mines, experiments were carried out in two different channels with variation in gas concentration and geometry. Flame and pressure transducers were used to track the explosion front velocity. The flame speed (Sf) showed a slight downward trend while the methane concentration varied from 10% to 3% in the experimental channel. The peak overpressure (Pmax) dropped dramatically when compared with normal conditions. As well, the values of Pmax and Sf decreased when the methane concentration dropped from 8% to 6%. The flame speed in the channel, connected to a cylinder with a length varying from 0.5 to 2 m, was greater than that in the normal channel. The peak overpressure was also higher than that under normal conditions because of a higher flame speed and stronger pressure piling up. The values of Pmax and Sf increased with an increase in cylinder length. The research results indicate that damage caused by explosions can be reduced by decreasing the gas concentration, which should be immediately detected in roadways with large cross-sections because of the possibility of greater destruction caused by more serious explosions.
基金funded by the National Key Research and Development Program of China [grant numbers2017YFB0504000 and 2017YFC1501701]the National Natural Science Foundation of China [grant number 41575034]
文摘High-accuracy continuous measurements of atmospheric concentrations of CO2 were made from May 2016 to December 2017 using the Picarro G2301 analyzer at Xinglong station(40°24′N,117°30′E,940 MSL),150 km northeast of Beijing.The near-ground CO2 measurements were calibrated by standards based on WMO procedures.The regional background measurements were ltered by the robust extraction of baseline signal method to study the seasonal and diurnal cycles.The regional background CO2 concentrations were low in summer.The maximum diffierence between the local sources and regional background CO2 concentrations occurred in summer and autumn,indicating a strong in uence from local sources.Cluster analysis and potential source contribution function analysis showed that the long-distance transport of anthropogenic emissions in the Beijing Tianjin Hebei metropolitan area in uenced the CO2 concentrations in Xinglong,espe-cially in summer.The diurnal variation of CO2 was mainly in uenced by the various vertical transport conditions of the tropospheric atmosphere in a day.
基金Under the auspices of National Basic Research Program of China(No.2012CB417006)National Natural Science Foundation of China(No.41271500,41571107,41601041)
文摘Achieving water purity in Poyang Lake has become a major concern in recent years, thus appropriate evaluation of spatial and temporal water quality variations has become essential. Variations in 11 water quality parameters from 15 sampling sites in Poyang Lake were investigated from 2009 to 2012. An integrative fuzzy variable evaluation(IFVE) model based on fuzzy theory and variable weights was developed to measure variations in water quality. Results showed that: 1) only chlorophyll-a concentration and Secchi depth differed significantly among the 15 sampling sites(P < 0.01), whereas the 11 water quality parameters under investigation differed significantly throughout the seasons(P < 0.01). The annual variations of all water quality variables except for temperature, electrical conductivity, suspended solids and total phosphorus were considerable(P < 0.05). 2) The IFVE model was reasonable and flexible in evaluating water quality status and any possible ′bucket effect′. The model fully considered the influences of extremely poor indices on overall water quality. 3) A spatial analysis indicated that anthropogenic activities(particularly industrial sewage and dredging) and lake bed topography might directly affect water quality in Poyang Lake. Meanwhile, hydrological status and sewage discharged into the lake might be responsible for seasonal water quality variations.
基金Under the auspices of International Science and Technology Cooperation Project(No.2010DFA22480)Major State Basic Research Development Program of China(No.2010CB833503)
文摘It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with rare investigation of forest carbon stocks influ- enced by forest management practices and climate change at regional scale. In this study, a general integrative approach was used to simulate spatial and temporal variations of woody biomass and harvested biomass of forest in China during the 21st century under dif- ferent scenarios of climate and CO2 concentration changes and management tasks by coupling Integrated Terrestrial Ecosystem Carbon budget (InTEC) model with Global Forest Model (G4M). The results showed that forest management practices have more predominant effects on forest stem stocking biomass than climate and CO2 concentration change. Meanwhile, the concurrent future changes in cli- mate and CO2 concentration will enhance the amounts of stem stocking biomass in forests of China by 12%-23% during 2001-2100 relative to that with climate change only. The task for maximizing stem stocking biomass will dramatically enhance the stem stocking biomass from 2001~100, while the task for maximum average increment will result in an increment of stem stocking biomass before 2050 then decline. The difference of woody biomass responding to forest management tasks was owing to the current age structure of forests in China. Meanwhile, the sensitivity of long-term woody biomass to management practices for different forest types (coniferous forest, mixed forest and deciduous forest) under changing climate and CO2 concentration was also analyzed. In addition, longer rotation length under future climate change and rising CO2 concentration scenario will dramatically increase the woody biomass of China during 2001~100. Therefore, our estimation indicated that taking the role of forest management in the carbon cycle into the consideration at regional or national level is very important to project the forest carbon sequestration under future climate change and rising atmospheric CO2 concentration.
基金supported by the National Natural Science Foundation of China (No.50604014)the Program for New Century Excellent Talent Project(No.NCET-08-0838)the Research Fund of the State Key Laboratory of Coal Resources and Safe Mining,CUMT (No.09KF11)
文摘In light of the possibility of reignition when unsealing the closed fire zones, the occurrence of reignition was simulated by a home-made experimental device, hydrogen variety rule from combustion to unsealing was analyzed, the three-stage generation model of hydrogen during reignition in fire zone was put forward and the probability that hydrogen was taken as an indicator gas was discussed. The results show that: when fire zone is ready to unseal, which is filled with hydrogen at a high concentration, it is more prone to reignite.
文摘In this work, sesamin and sesamolin is separated and purified by SMB (simulated moving bed) chromatography. Purity of sesamin and sesamolin can reach 99.2% and 99.9 %, and they can be recovered by 99.9% and 99.4%, respectively. Concentrations of the extract and raffinate was monitored and periodical change of the concentration was observed on experiment. Effects of non-linear adsorption, dead volume, and temperature on the separation are reviewed by the triangle theory to explain the periodical change of concentration. It is found that dead volume has little effect, and temperature fluctuation significantly affects thc separation by SMB. The temperature seriously affects the robust operation of SMB due to the change of Henry's constant, which will change the selectivity and restrain the productivity. Although the productivity in this study is only 0.0416 g/L-hr, the cost of the stationary phase used in this study is much lower than that of packed in analytical column. By using this stationary phase, the authors are still able to separate the mixture of sesamin and sesmolin. This will economically attract attention for the application of SMB to purify bioactive compounds on developing botanical drugs.
基金supported by the National Basic Research Program of China (No. 2002CB412504)
文摘Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary. Concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the Yellow River during dry seasons were higher than those during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment desorption processes in low salinity regions. In contrast to DOC, the effective concen- trations of DIC were 10% lower than the DIC measured at freshwater end, and the loss of DIC was caused by CaCO3 precipitation in low salinity region, Particulate organic carbon (POC) and particulate inorganic carbon (PIC) contents of the particles stabilized to constant values (0.5%:t:0.05% and 1.8%--0.2%, respectively) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations. A rapid drop of PIC and rise of POC occurred simultaneously outside the TMZ due to an intense dilution of riv- erine inorganic-rich particles being transported into a pool of aquatic organic-poor particles outside the TMZ. Annually, the Yellow River transported 6.95× 10^5 t of DIC, 0.64× 10^5 t of DOC, 78.58× 10^5 t of PIC and 2.29× 10^5 t of POC to the sea.
基金Supported by the National Natural Science Foundation of China(51276141)the Natural Science Basic Research Plan in Shaanxi Province of China(2015JQ5192)"Fundamental Research Funds for the Central Universities"
文摘The application of spray towers for CO2 capture is a development trend in recent years. However, most of the previous jobs were conducted in a cylindrical tower by using a single spray nozzle, whose configuration and performance is not good enough for industrial application. To solve this problem, the present work proposed a diameter-varying spray tower and a new spray mode of dual-nozzle opposed impinging spray to enhance the heat and mass transfer of CO2 absorption process. Experiments were performed to investigate the mass transfer performance (in terms of the CO2 removal rate (η) and the overall mass transfer coefficient (KGae)) of the improved spray tower under various operating conditions. Experimental results showed that the liquid to gas ratio and mole ratio of MEA to C02 are major factors, which affect the absorption performance and the maximums of η and KGae that are 94.0% and 0.574 kmol. m^-3·h^-1·kPa^-1, respectively, under the experimental conditions. Furthermore, new correlations to predict the mass transfer coefficient of the proposed spray tower are developed in various CO2 concentrations with a Pearson Correlation Coefficient over 90%.
基金Project supported by the National Natural Science Foundation of China (No. 49771001).
文摘The annual series of δ13C were measured in tree rings of three Cryptomeria fortunei disks (OF-1, OF-2, and OF- 3) collected from West Tianmu Mountain, Zhejiang Province, China, according to cross-dating tree ring ages. There was no obvious decreasing trend of the δ13C annual time series of CF-2 before 1835. However, from 1835 to 1982 the three tree ring δ13C annual series exhibited similar decreasing trends that were significantly (P ≤ 0.001) correlated. The distribution characteristics of a scatter diagram between estimated δ13C series of CF-2 from modeling and the atmospheric CO2 concentration extracted from the Law Dome ice core from 1840 to 1978 were analyzed and a curvilinear regression equation for reconstructing atmospheric CO2 concentration was established with R2 = 0.98. Also, a test of independent samples indicated that between 1685 and 1839 the reconstructed atmospheric CO2 concentration .using the δ13C series of CF-2 had a close relationship with the Law Dome and Siple ice cores, with a standard deviation of 1.98. The general increasing trend of the reconstructed atmospheric CO2 concentration closely reflected the 10ng-term variation of atmospheric CO2 concentration recorded both before and after the Industrial Revolution. Between 1685 and 1840 the evaluated atmospheric CO2 concentration was stable, but after 1840 it exhibited a rapid increase. Given a longer δ13C annual time series of tree rings, it was feasible to rebuild a representative time series to describe the atmospheric CO2 concentration for an earlier period and for years that were not in the ice core record.