In this work, sesamin and sesamolin is separated and purified by SMB (simulated moving bed) chromatography. Purity of sesamin and sesamolin can reach 99.2% and 99.9 %, and they can be recovered by 99.9% and 99.4%, r...In this work, sesamin and sesamolin is separated and purified by SMB (simulated moving bed) chromatography. Purity of sesamin and sesamolin can reach 99.2% and 99.9 %, and they can be recovered by 99.9% and 99.4%, respectively. Concentrations of the extract and raffinate was monitored and periodical change of the concentration was observed on experiment. Effects of non-linear adsorption, dead volume, and temperature on the separation are reviewed by the triangle theory to explain the periodical change of concentration. It is found that dead volume has little effect, and temperature fluctuation significantly affects thc separation by SMB. The temperature seriously affects the robust operation of SMB due to the change of Henry's constant, which will change the selectivity and restrain the productivity. Although the productivity in this study is only 0.0416 g/L-hr, the cost of the stationary phase used in this study is much lower than that of packed in analytical column. By using this stationary phase, the authors are still able to separate the mixture of sesamin and sesmolin. This will economically attract attention for the application of SMB to purify bioactive compounds on developing botanical drugs.展开更多
Thin films of block copolymers (BCPs) are widely accepted as potentially important materials in a host of technological applications including nano- lithography. In order to induce domain separation and form well-de...Thin films of block copolymers (BCPs) are widely accepted as potentially important materials in a host of technological applications including nano- lithography. In order to induce domain separation and form well-defined structural arrangements, many of these are solvent-annealed (i.e. solvent swollen) at moderate temperatures. The use of solvents can be challenging in industry from an environmental point of view as well as having practical/cost issues. However, a simple and environmentally friendly alternative to solvo-thermal annealing for the periodically ordered nanoscale phase separated structures is described herein. Various asymmetric polystyrene-b-poly(ethylene oxide) (PS-b-PEO) thin films were annealed in a compressible fluid, supercritical carbon dioxide (scCO2), to control nanodomain orientation and surface morphologies. For the first time, periodic well defined, hexagonally ordered films with sub-25 nm pitch size were demonstrated using a supercritical fluid (SCF) process at low temperatures and pressures. Predominant swelling of PEO domains in scCO2 induces nanophase separation, scCO2 serves as green alternative to the conventional organic solvents for the phase segregation of BCPs with complete elimination of any residual solvent in the patterned film. The depressurization rate of scCO2 following annealing was found to affect the morphology of the films. The supercritical annealing conditions could be used to define nanoporous analogues of the microphase separated films without additional processing, providing a one-step route to membrane like structures without affecting the ordered surface phase segregated structure. An understanding of the BCP self- assembly mechanism can be realized in terms of the deviation in glass transition temperature, melting point, viscosity, interaction parameter and volume fraction of the constituent blocks in the scCO2 environment.展开更多
文摘In this work, sesamin and sesamolin is separated and purified by SMB (simulated moving bed) chromatography. Purity of sesamin and sesamolin can reach 99.2% and 99.9 %, and they can be recovered by 99.9% and 99.4%, respectively. Concentrations of the extract and raffinate was monitored and periodical change of the concentration was observed on experiment. Effects of non-linear adsorption, dead volume, and temperature on the separation are reviewed by the triangle theory to explain the periodical change of concentration. It is found that dead volume has little effect, and temperature fluctuation significantly affects thc separation by SMB. The temperature seriously affects the robust operation of SMB due to the change of Henry's constant, which will change the selectivity and restrain the productivity. Although the productivity in this study is only 0.0416 g/L-hr, the cost of the stationary phase used in this study is much lower than that of packed in analytical column. By using this stationary phase, the authors are still able to separate the mixture of sesamin and sesmolin. This will economically attract attention for the application of SMB to purify bioactive compounds on developing botanical drugs.
文摘Thin films of block copolymers (BCPs) are widely accepted as potentially important materials in a host of technological applications including nano- lithography. In order to induce domain separation and form well-defined structural arrangements, many of these are solvent-annealed (i.e. solvent swollen) at moderate temperatures. The use of solvents can be challenging in industry from an environmental point of view as well as having practical/cost issues. However, a simple and environmentally friendly alternative to solvo-thermal annealing for the periodically ordered nanoscale phase separated structures is described herein. Various asymmetric polystyrene-b-poly(ethylene oxide) (PS-b-PEO) thin films were annealed in a compressible fluid, supercritical carbon dioxide (scCO2), to control nanodomain orientation and surface morphologies. For the first time, periodic well defined, hexagonally ordered films with sub-25 nm pitch size were demonstrated using a supercritical fluid (SCF) process at low temperatures and pressures. Predominant swelling of PEO domains in scCO2 induces nanophase separation, scCO2 serves as green alternative to the conventional organic solvents for the phase segregation of BCPs with complete elimination of any residual solvent in the patterned film. The depressurization rate of scCO2 following annealing was found to affect the morphology of the films. The supercritical annealing conditions could be used to define nanoporous analogues of the microphase separated films without additional processing, providing a one-step route to membrane like structures without affecting the ordered surface phase segregated structure. An understanding of the BCP self- assembly mechanism can be realized in terms of the deviation in glass transition temperature, melting point, viscosity, interaction parameter and volume fraction of the constituent blocks in the scCO2 environment.