This article discussed about snow temperature variations and their impact on snow cover parameters. Automatic temperature recorders were used to sample at lo-minute intervals at the Tianshan Station for Snow-cover and...This article discussed about snow temperature variations and their impact on snow cover parameters. Automatic temperature recorders were used to sample at lo-minute intervals at the Tianshan Station for Snow-cover and Avalanche Research, Chinese snow temperature Academy of Sciences. lo-layer and the snow cover parameters were measured by the snow property analyzer (Snow Fork) in its Stable period, Interim period and Snow melting period. Results indicate that the amplitude of the diurnal fluctuation in the temperature during Snow melting period is 1.62 times greater than that during Stable period. Time up to the peak temperature at the snow surface lags behind the peak solar radiation by more than 2.5 hours, and lags behind the peak atmospheric temperature by more than 0.2 hours during all three periods. The optimal fitted function of snow temperature profile becomes more complicated from Stable period to Snow melting period. 22 h temperature profiles in Stable period are the optimal fitted by cubic polynomial equation. In Interim period and Snow melting period, temperature profiles are optimal fitted by exponential equation between sunset and sunrise, and by Fourier function when solar radiation is strong. The vertical gradient in the snow temperature reaches its maximum value at the snow surface for three periods. The peak of this maximum value occurs during Stableperiod, and is 4.46 times greater than during Interim period. The absolute value of temperature gradient is lower than 0.1℃ cm-1 for 30 cm beneath snow surface. Snow temperature and temperature gradient in Stable period-Interim period indirectly cause increase (decrease) of snow density mainly by increasing (decreasing) permittivity. While it dramatically increases its water content to change its permittivity and snow density in Snow melting period.展开更多
The objective of the present work is to model the magnetohydrodynamic(MHD) three dimensional flow of viscoelastic fluid passing a stretching surface. Heat transfer analysis is carried out in the presence of variable t...The objective of the present work is to model the magnetohydrodynamic(MHD) three dimensional flow of viscoelastic fluid passing a stretching surface. Heat transfer analysis is carried out in the presence of variable thermal conductivity and thermal radiation. Arising nonlinear analysis for velocity and temperature is computed. Discussion to importantly involved parameters through plots is presented. Comparison between present and previous limiting solutions is shown. Numerical values of local Nusselt number are computed and analyzed. It can be observed that the effects of viscoelastic parameter and Hartman number on the temperature profile are similar in a qualitative way. The variations in temperature are more pronounced for viscoelastic parameter K in comparison to the Hartman number M. The parameters N and ε give rise to the temperature. It is interesting to note that values of local Nusselt number are smaller for the larger values of ε.展开更多
In this paper, turbulent data obtained from the Damxung site during the Secondary Tibetan Plateau Science Experiment (TIPEX) in 1998 are used to study the characteristics of the turbulent spectra, turbulence transport...In this paper, turbulent data obtained from the Damxung site during the Secondary Tibetan Plateau Science Experiment (TIPEX) in 1998 are used to study the characteristics of the turbulent spectra, turbulence transport, and the dissipation rates of turbulent kinetic energy, temperature variance, and humidity variance in the middle area of the Tibetan Plateau. The turbulent spectra of wind velocity, potential temperature, and humidity satisfy the-2/3 power law in the high frequency range. Horizontal transportation of heat and water vapor is negligible compared with vertical transportation under strong unstable conditions, and as the stability parameter z/L increases (where z is the observational height, and L is the Monin Obukhov length), horizontal transportation becomes dominant under near-neutral, neutral, and stable conditions. The non-dimensional temperature and humidity variances are 20% less than the temperature and humidity gradient variances. These deficits appear to increase as the absolute stability parameter increases. Moreover, the effects of turbulence transportation and pressure variance exist throughout the entire stability region.展开更多
Brittle pro-eutectoid cementite that forms along prior-austenite in hypereutectoid steels is deleterious to mechanical properties. The optimum process parameters which suppress the formation of pro-eutectoid cementite...Brittle pro-eutectoid cementite that forms along prior-austenite in hypereutectoid steels is deleterious to mechanical properties. The optimum process parameters which suppress the formation of pro-eutectoid cementite in hypereutectoid steels with carbon content in the range of 0.8%-1.3% in mass fraction, were investigated. Pro-eutectoid cementite formation is effectively hindered by increasing the deformation temperature and decreasing the amount of strain. Transformation at lower temperatures close to the nose of the cooling-transformation diagram also reduces the tendency of the formation of pro-eutectoid cementite. Control of prior-austenite grain size and grain boundary conditions is important. Due to larger number of nucleation sites, finer prior-austenite grain size results in the acceleration of transformation to pro-eutectoid cementite. However, large prior-austenite and straight boundaries lead to less nucleation sites of pro-eutectoid cementite. The cooling rate and carbon content should be reduced as much as possible. The transformation temperature below 660 °C and the strain of 0.5 at deformation temperature of 850 °C are suggested.展开更多
The thermal conductivity of methane hydrate is an important physical parameter affecting the processes of methane hydrate exploration,mining,gas hydrate storage and transportation as well as other applications.Equilib...The thermal conductivity of methane hydrate is an important physical parameter affecting the processes of methane hydrate exploration,mining,gas hydrate storage and transportation as well as other applications.Equilibrium molecular dynamics simulations and the Green-Kubo method have been employed for systems from fully occupied to vacant occupied sI methane hydrate in order to estimate their thermal conductivity.The estimations were carried out at temperatures from 203.15 to 263.15 K and at pressures from 3 to 100 MPa.Potential models selected for water were TIP4P,TIP4P-Ew,TIP4P/2005,TIP4P-FQ and TIP4P/Ice.The effects of varying the ratio of the host and guest molecules and the external thermobaric conditions on the thermal conductivity of methane hydrate were studied.The results indicated that the thermal conductivity of methane hydrate is essentially determined by the cage framework which constitutes the hydrate lattice and the cage framework has only slightly higher thermal conductivity in the presence of the guest molecules.Inclusion of more guest molecules in the cage improves the thermal conductivity of methane hydrate.It is also revealed that the thermal conductivity of the sI hydrate shows a similar variation with temperature.Pressure also has an effect on the thermal conductivity,particularly at higher pressures.As the pressure increases,slightly higher thermal conductivities result.Changes in density have little impact on the thermal conductivity of methane hydrate.展开更多
Two monthly datasets of sea surface temperature (SST),TMI SST retrieved from satellite observations by Remote Sensing System and HadISST1 (Hadley Centre Sea-ice and Sea-surface Temperature Data Set Version 1) derived ...Two monthly datasets of sea surface temperature (SST),TMI SST retrieved from satellite observations by Remote Sensing System and HadISST1 (Hadley Centre Sea-ice and Sea-surface Temperature Data Set Version 1) derived from in situ measurements by Hadley Centre,were compared on climatologic multiple time scales over tropical and subtropical areas from 1998 to 2006.Results indicate that there is a good consistency in the horizontal global distribution,with 1.0° resolution on multi-year and multi-season mean scales between the two datasets,and also in the time series of global mean SST anomalies.However,there are still some significant differences between the datasets.Generally,TMI SST is relatively higher than HadISST1.In addition,the differences between the two datasets show not only remarkable regionality,but also distinct seasonal variations.Moreover,the maximum departure occurs in summer,while theminimum takes place in autumn.For all seasons,over 30% of the regions in the Tropical and Subtropical areas have a difference of more than 0.3°C.EOF analysis of the SST anomaly field also shows that there are differences between the two datasets,where HadISST1 has more significant statistical characteristics than TMI SST.On the other hand,results show that the difference between the two datasets is related to the vertical structure of ocean temperatures,as well as other simultaneously retrieved parameters in TMI products,such as wind speed,water vapor,liquid cloud water and rain rates.In addition,large biases between HadISST1 and TMI SST are found in coastal regions,where TMI SST cannot be accurately retrieved because of polluted microwave signals.展开更多
基金supported by social welfare of Ministry Science and Technology Development of China (Grant No.GYHY200706008)the "Western Light" Project (RCPY200902) of the Chinese Academy of Sciencesthe Oasis Scholar "Doctor" Talent Training Program (0771021) of Xinjiang Institute of Ecology
文摘This article discussed about snow temperature variations and their impact on snow cover parameters. Automatic temperature recorders were used to sample at lo-minute intervals at the Tianshan Station for Snow-cover and Avalanche Research, Chinese snow temperature Academy of Sciences. lo-layer and the snow cover parameters were measured by the snow property analyzer (Snow Fork) in its Stable period, Interim period and Snow melting period. Results indicate that the amplitude of the diurnal fluctuation in the temperature during Snow melting period is 1.62 times greater than that during Stable period. Time up to the peak temperature at the snow surface lags behind the peak solar radiation by more than 2.5 hours, and lags behind the peak atmospheric temperature by more than 0.2 hours during all three periods. The optimal fitted function of snow temperature profile becomes more complicated from Stable period to Snow melting period. 22 h temperature profiles in Stable period are the optimal fitted by cubic polynomial equation. In Interim period and Snow melting period, temperature profiles are optimal fitted by exponential equation between sunset and sunrise, and by Fourier function when solar radiation is strong. The vertical gradient in the snow temperature reaches its maximum value at the snow surface for three periods. The peak of this maximum value occurs during Stableperiod, and is 4.46 times greater than during Interim period. The absolute value of temperature gradient is lower than 0.1℃ cm-1 for 30 cm beneath snow surface. Snow temperature and temperature gradient in Stable period-Interim period indirectly cause increase (decrease) of snow density mainly by increasing (decreasing) permittivity. While it dramatically increases its water content to change its permittivity and snow density in Snow melting period.
基金supported by the Deanship of Scientific Research (DSR) of King Abdulaziz University, Jeddah, Saudi Arabia
文摘The objective of the present work is to model the magnetohydrodynamic(MHD) three dimensional flow of viscoelastic fluid passing a stretching surface. Heat transfer analysis is carried out in the presence of variable thermal conductivity and thermal radiation. Arising nonlinear analysis for velocity and temperature is computed. Discussion to importantly involved parameters through plots is presented. Comparison between present and previous limiting solutions is shown. Numerical values of local Nusselt number are computed and analyzed. It can be observed that the effects of viscoelastic parameter and Hartman number on the temperature profile are similar in a qualitative way. The variations in temperature are more pronounced for viscoelastic parameter K in comparison to the Hartman number M. The parameters N and ε give rise to the temperature. It is interesting to note that values of local Nusselt number are smaller for the larger values of ε.
基金support of the National Natural Science Foundation of China(41075005)the Research Fund for the Doctoral Program of Higher Education(20110001130010)R&D Special Fund for Public Welfare Industry (Meteorology) by Ministry of Finance and Ministry of Science and Technology(GYHY201006014) in the present study
文摘In this paper, turbulent data obtained from the Damxung site during the Secondary Tibetan Plateau Science Experiment (TIPEX) in 1998 are used to study the characteristics of the turbulent spectra, turbulence transport, and the dissipation rates of turbulent kinetic energy, temperature variance, and humidity variance in the middle area of the Tibetan Plateau. The turbulent spectra of wind velocity, potential temperature, and humidity satisfy the-2/3 power law in the high frequency range. Horizontal transportation of heat and water vapor is negligible compared with vertical transportation under strong unstable conditions, and as the stability parameter z/L increases (where z is the observational height, and L is the Monin Obukhov length), horizontal transportation becomes dominant under near-neutral, neutral, and stable conditions. The non-dimensional temperature and humidity variances are 20% less than the temperature and humidity gradient variances. These deficits appear to increase as the absolute stability parameter increases. Moreover, the effects of turbulence transportation and pressure variance exist throughout the entire stability region.
基金Project(51222405)supported by the National Science Foundation for Outstanding Young Scholars of ChinaProject(51034002)supported by the National Natural Science Foundation of China+1 种基金Project(132002)supported by the Fok Ying Tong Education Foundation,ChinaProject(N120502001)supported by the Basic Scientific Research Operation of Center University of China
文摘Brittle pro-eutectoid cementite that forms along prior-austenite in hypereutectoid steels is deleterious to mechanical properties. The optimum process parameters which suppress the formation of pro-eutectoid cementite in hypereutectoid steels with carbon content in the range of 0.8%-1.3% in mass fraction, were investigated. Pro-eutectoid cementite formation is effectively hindered by increasing the deformation temperature and decreasing the amount of strain. Transformation at lower temperatures close to the nose of the cooling-transformation diagram also reduces the tendency of the formation of pro-eutectoid cementite. Control of prior-austenite grain size and grain boundary conditions is important. Due to larger number of nucleation sites, finer prior-austenite grain size results in the acceleration of transformation to pro-eutectoid cementite. However, large prior-austenite and straight boundaries lead to less nucleation sites of pro-eutectoid cementite. The cooling rate and carbon content should be reduced as much as possible. The transformation temperature below 660 °C and the strain of 0.5 at deformation temperature of 850 °C are suggested.
基金supported by the National Natural Science Foundation of China(51106163)the National Basic Research Program of China (2009CB219504)the Joint Funds of NSFC with the Government of Guangdong Province(U0933004)
文摘The thermal conductivity of methane hydrate is an important physical parameter affecting the processes of methane hydrate exploration,mining,gas hydrate storage and transportation as well as other applications.Equilibrium molecular dynamics simulations and the Green-Kubo method have been employed for systems from fully occupied to vacant occupied sI methane hydrate in order to estimate their thermal conductivity.The estimations were carried out at temperatures from 203.15 to 263.15 K and at pressures from 3 to 100 MPa.Potential models selected for water were TIP4P,TIP4P-Ew,TIP4P/2005,TIP4P-FQ and TIP4P/Ice.The effects of varying the ratio of the host and guest molecules and the external thermobaric conditions on the thermal conductivity of methane hydrate were studied.The results indicated that the thermal conductivity of methane hydrate is essentially determined by the cage framework which constitutes the hydrate lattice and the cage framework has only slightly higher thermal conductivity in the presence of the guest molecules.Inclusion of more guest molecules in the cage improves the thermal conductivity of methane hydrate.It is also revealed that the thermal conductivity of the sI hydrate shows a similar variation with temperature.Pressure also has an effect on the thermal conductivity,particularly at higher pressures.As the pressure increases,slightly higher thermal conductivities result.Changes in density have little impact on the thermal conductivity of methane hydrate.
基金supported by the National Basic Research Program of China(Grant No.2010CB428601)the Special Funds for Public Welfare of China(Grant Nos.GYHY200906002,GYHY200906003)+2 种基金the Science and Technology Special Basic Research of the Ministry of Science and Technology(Grant No.2007FY110700)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant Nos.KZCX2-YW-Q11-04,KZCX2-EWQN507,KJCX2-YW-N25)the National Natural Science Foundation of China(Grant Nos.40730950,40805008)
文摘Two monthly datasets of sea surface temperature (SST),TMI SST retrieved from satellite observations by Remote Sensing System and HadISST1 (Hadley Centre Sea-ice and Sea-surface Temperature Data Set Version 1) derived from in situ measurements by Hadley Centre,were compared on climatologic multiple time scales over tropical and subtropical areas from 1998 to 2006.Results indicate that there is a good consistency in the horizontal global distribution,with 1.0° resolution on multi-year and multi-season mean scales between the two datasets,and also in the time series of global mean SST anomalies.However,there are still some significant differences between the datasets.Generally,TMI SST is relatively higher than HadISST1.In addition,the differences between the two datasets show not only remarkable regionality,but also distinct seasonal variations.Moreover,the maximum departure occurs in summer,while theminimum takes place in autumn.For all seasons,over 30% of the regions in the Tropical and Subtropical areas have a difference of more than 0.3°C.EOF analysis of the SST anomaly field also shows that there are differences between the two datasets,where HadISST1 has more significant statistical characteristics than TMI SST.On the other hand,results show that the difference between the two datasets is related to the vertical structure of ocean temperatures,as well as other simultaneously retrieved parameters in TMI products,such as wind speed,water vapor,liquid cloud water and rain rates.In addition,large biases between HadISST1 and TMI SST are found in coastal regions,where TMI SST cannot be accurately retrieved because of polluted microwave signals.