An as-solution treated Mg-6Gd-1Y-0.4Zr alloy was processed by low temperature thermo-mechanical treatments (LT-TMT), including cold tension with various strains followed by aging at 200 °C to peak hardness. The...An as-solution treated Mg-6Gd-1Y-0.4Zr alloy was processed by low temperature thermo-mechanical treatments (LT-TMT), including cold tension with various strains followed by aging at 200 °C to peak hardness. The results show that the precipitation kinetics of the alloy experienced LT-TMT is greatly accelerated and the aging time to peak hardness is greatly decreased with increasing tensile strain. The tensile yield strength, ultimate tensile strength and elongation at room temperature of the alloy after cold tension with strain of 10% and peak aging at 200 °C are 251 MPa, 296 MPa and 8%, respectively, which are superior to the commercial heat-resistant WE54 alloy, although the latter has a higher rare earth element content.展开更多
A new Mg-14Al-0.5Mn alloy that exhibits a wide solidification range and sufficient fluidity for semi-solid forming was designed. And the rnicrostructure evolution of semi-solid Mg-14Al-0.5Mn alloy during isothermal he...A new Mg-14Al-0.5Mn alloy that exhibits a wide solidification range and sufficient fluidity for semi-solid forming was designed. And the rnicrostructure evolution of semi-solid Mg-14Al-0.5Mn alloy during isothermal heat treatment was investigated. The mechanism of the microstructure evolution and the processing conditions for isothermal heat treatment were also discussed. The results show that the microstructures of cast alloys consist of α-Mg,β-Mg17Al12 and a small amount of Al-Mn compounds. After holding at 520 ℃ for 3 min, the phases of β-Mg17Al12 and eutectic mixtures in the Mg-14Al-0.5Mn alloy melt and the microstructures of α-Mg change from developed dendrites to irregular solid particles. With increasing the isothermal time, the amount of liquid increases, and the solid particles grow large and become spherical. When the holding time lasts for 20 min or even longer, the solid and liquid phases achieve a state of dynamic equilibrium.展开更多
The VO2 powders were prepared by hydrothermal synthesis.The effects of heat treatment conditions and Y-doping on the structure and phase transition temperature of VO2 were studied.The XRD,SEM and TEM results show that...The VO2 powders were prepared by hydrothermal synthesis.The effects of heat treatment conditions and Y-doping on the structure and phase transition temperature of VO2 were studied.The XRD,SEM and TEM results show that the heat treatment temperature has a significant effect on the crystal transformation of VO2 precursor.Increasing temperature is conducive to the transformation of precursor VO2(B)to ultrafine VO2(M).The Y-doping affects the structure of VO2.Y^3+can occupy the lattice position of V4+to form YVO4 solid solution,which can increase the cell parameters of VO2.Due to the lattice deformation caused by Y-doping,the aggregation of particles is prevented,and the grain is refined obviously.DSC curves show that Y-doping can reduce the phase transition temperature of VO2(M).After adding 9 at.%Y,the phase transition temperature can be reduced from 68.3 to 61.3℃.展开更多
One of the bottle-neck problems to the commercial development of supercritlcal water oxidation (SCWO) is high operation cost. In this study the condition to realize an energetically self-sufficient SCWO process is a...One of the bottle-neck problems to the commercial development of supercritlcal water oxidation (SCWO) is high operation cost. In this study the condition to realize an energetically self-sufficient SCWO process is analyzed. The reaction heat is recovered by means of Organic Rankine Circle. The process of SCWO for phenol is simulated with the Aspen Plus~ process simulator, and the results show that the influence of temperature on reaction heat is small at a constant pressure. It is reasonable to neglect the effect of temperature and to estimate the heat of reaction with average temperature when the temperature changes in a small range. The necessary condition to realize an energetically self-sufficient SCWO process is that the released energy is not less than consumed one. Whether a waste system with given chemical composition is energeticallyself-sufficient can be estimated by ^QR^QH 〉 W The thermodynamics analysis shows that energetically self-sufficient SCWO process with an Organic Rankine Cycle is a feasible technology for the recovery of SCWO reaction heat,and the energy balance point for phenol is 2wt%.展开更多
Distortion often appears at the corners of heavy turbine blade castings during heat treatment processes, so a great machining allowance is generally set in production which directly results in cost increase. In this p...Distortion often appears at the corners of heavy turbine blade castings during heat treatment processes, so a great machining allowance is generally set in production which directly results in cost increase. In this paper, a novel real-time measuring technology is developed for non-contact measuring the deformation behavior of heavy steel castings in heat treatment process. It was employed to measure the distortion and the temperature field of a batch of heavy turbine blade castings at cooling stage in normalizing process. Three inflection points appear in the distortion-time curves, and the residual distortion is affected by the regional area of not finished martensite transformation when the second inflection point appears. When the mean air temperature falls into the range of 10℃-20℃, the residual distortion is small; when it is lower than 10℃, positive distortion appears; when it is higher than 20℃, negative distortion appears. The distortion varies with seasonal temperature, which is directly responsible for the great machining allowance given in production.展开更多
基金funded by the National Key Research and Development Plan of China(No.2020YFA0711104)the Project of State Key Laboratory of High Performance Complex Manufacturing,Central South University,China(No.ZZYJKT2019-04)+1 种基金Scientific Research Initial Funding of Central South University,China(No.202045001)the National Natural Science Foundation of China(No.51901247)。
基金Projects(50971089,51171113,51001072)supported by the National Natural Science Foundation of ChinaProjects(2012M511089,20090460615,201003267)supported by the Postdoctoral Science Foundation of China
文摘An as-solution treated Mg-6Gd-1Y-0.4Zr alloy was processed by low temperature thermo-mechanical treatments (LT-TMT), including cold tension with various strains followed by aging at 200 °C to peak hardness. The results show that the precipitation kinetics of the alloy experienced LT-TMT is greatly accelerated and the aging time to peak hardness is greatly decreased with increasing tensile strain. The tensile yield strength, ultimate tensile strength and elongation at room temperature of the alloy after cold tension with strain of 10% and peak aging at 200 °C are 251 MPa, 296 MPa and 8%, respectively, which are superior to the commercial heat-resistant WE54 alloy, although the latter has a higher rare earth element content.
基金Projects(2006BA104B04-1,2006BAE04B07-3)supported by the National Science and Technology Supporting Program of ChinaProject(2007KZ05)supported by the Science and Technology Supporting Project of Changchun City,China+1 种基金Project(2008)supported by the Open Subject of State Key Laboratory of Rare Earth Resource Utilization,ChinaProject supported by the"985 Project"of Jilin University,China
文摘A new Mg-14Al-0.5Mn alloy that exhibits a wide solidification range and sufficient fluidity for semi-solid forming was designed. And the rnicrostructure evolution of semi-solid Mg-14Al-0.5Mn alloy during isothermal heat treatment was investigated. The mechanism of the microstructure evolution and the processing conditions for isothermal heat treatment were also discussed. The results show that the microstructures of cast alloys consist of α-Mg,β-Mg17Al12 and a small amount of Al-Mn compounds. After holding at 520 ℃ for 3 min, the phases of β-Mg17Al12 and eutectic mixtures in the Mg-14Al-0.5Mn alloy melt and the microstructures of α-Mg change from developed dendrites to irregular solid particles. With increasing the isothermal time, the amount of liquid increases, and the solid particles grow large and become spherical. When the holding time lasts for 20 min or even longer, the solid and liquid phases achieve a state of dynamic equilibrium.
基金Projects(51404183,51504177)supported by the National Natural Science Foundation of China。
文摘The VO2 powders were prepared by hydrothermal synthesis.The effects of heat treatment conditions and Y-doping on the structure and phase transition temperature of VO2 were studied.The XRD,SEM and TEM results show that the heat treatment temperature has a significant effect on the crystal transformation of VO2 precursor.Increasing temperature is conducive to the transformation of precursor VO2(B)to ultrafine VO2(M).The Y-doping affects the structure of VO2.Y^3+can occupy the lattice position of V4+to form YVO4 solid solution,which can increase the cell parameters of VO2.Due to the lattice deformation caused by Y-doping,the aggregation of particles is prevented,and the grain is refined obviously.DSC curves show that Y-doping can reduce the phase transition temperature of VO2(M).After adding 9 at.%Y,the phase transition temperature can be reduced from 68.3 to 61.3℃.
文摘One of the bottle-neck problems to the commercial development of supercritlcal water oxidation (SCWO) is high operation cost. In this study the condition to realize an energetically self-sufficient SCWO process is analyzed. The reaction heat is recovered by means of Organic Rankine Circle. The process of SCWO for phenol is simulated with the Aspen Plus~ process simulator, and the results show that the influence of temperature on reaction heat is small at a constant pressure. It is reasonable to neglect the effect of temperature and to estimate the heat of reaction with average temperature when the temperature changes in a small range. The necessary condition to realize an energetically self-sufficient SCWO process is that the released energy is not less than consumed one. Whether a waste system with given chemical composition is energeticallyself-sufficient can be estimated by ^QR^QH 〉 W The thermodynamics analysis shows that energetically self-sufficient SCWO process with an Organic Rankine Cycle is a feasible technology for the recovery of SCWO reaction heat,and the energy balance point for phenol is 2wt%.
基金supported by the National Eleventh Five-Year Science and Technology Support Program of China (Grant No.2007BAF02B02)the Major Projects of Ministry of Science of China (Grant No.2009ZX04014-082)
文摘Distortion often appears at the corners of heavy turbine blade castings during heat treatment processes, so a great machining allowance is generally set in production which directly results in cost increase. In this paper, a novel real-time measuring technology is developed for non-contact measuring the deformation behavior of heavy steel castings in heat treatment process. It was employed to measure the distortion and the temperature field of a batch of heavy turbine blade castings at cooling stage in normalizing process. Three inflection points appear in the distortion-time curves, and the residual distortion is affected by the regional area of not finished martensite transformation when the second inflection point appears. When the mean air temperature falls into the range of 10℃-20℃, the residual distortion is small; when it is lower than 10℃, positive distortion appears; when it is higher than 20℃, negative distortion appears. The distortion varies with seasonal temperature, which is directly responsible for the great machining allowance given in production.