We present a 1 × 4 Y-branch digital optical switch in which S-bend variable optical attenuators are integrated. The S-bend waveguides, which are always introduced to connect the switch and the standard fiber arra...We present a 1 × 4 Y-branch digital optical switch in which S-bend variable optical attenuators are integrated. The S-bend waveguides, which are always introduced to connect the switch and the standard fiber array, are made use of and designed as variable optical attenuators. A compact device with low crosstalk and larger branching-angle is obtained. The device is fabricated on the thermo-optic polymer materials,and the performance of the device is measured. With an applied driving power of less than 200mW, the device has a low crosstalk of less than - 35dB at a wavelength of 1.55 μm.展开更多
This paper describes the research on the materials and design methods for advanced smart radiator devices (SRDs) on large-area flexible substrates utilized on spacecraft. The functional material is thermochromic van...This paper describes the research on the materials and design methods for advanced smart radiator devices (SRDs) on large-area flexible substrates utilized on spacecraft. The functional material is thermochromic vanadium dioxide. The coating design of SRD is similar to the design of broadband filter coatings in a mid-infrared region. The multilayer coatings have complex structures. Coating materials must be highly transparent in a required spectrum region and also mechanically robust enough to endure the influence from the rigorous environments of outer space. The number of layers must be very small, suitable for the deposition on large-area flexible substrates. All the coatings are designed initially based on optical calculation and practical experience, and then optimized by the TFCALC software. Several designs are described and compared with each other. The results show that the emittance variability of the designed SRDs is great than 400%, more advanced than the reported ones.展开更多
To solve the multi-variable and multi-objective optimization problem in the thermal design process of the dual-input aeronautic static inverter,an optimization method based on the combination of the multi-objective ev...To solve the multi-variable and multi-objective optimization problem in the thermal design process of the dual-input aeronautic static inverter,an optimization method based on the combination of the multi-objective evolutionary algorithm based on decomposition(MOEA/D)and the fuzzy set theory is proposed.The heat transfer path of the power device is analyzed and an equivalent heat circuit is conducted.We take junction temperature of the power device,mass,and cost of the heat sink as optimization goals,and take the heat sink structure parameters as design variables to conduct thermal optimization based on MOEA/D.This paper carries out a comparative study,and the results show that the proposed improved algorithm can meet the different requirements for multi-objective weights,and have good rapidity and robustness.展开更多
In this paper,we have presented a simple approach for experimental and application study on LabVIEW based temperature transmitter with NI myRIO device in the laboratory.In this work,to study the small range of tempera...In this paper,we have presented a simple approach for experimental and application study on LabVIEW based temperature transmitter with NI myRIO device in the laboratory.In this work,to study the small range of temperature(40-100℃)although different temperature sensors can be used still,we have used here a K-type thermocouple as the measuring temperature sensor.The analog output voltage of thermocouple is amplified by instrumentation amplifier and the amplified signal is fed to the analog input of NI myRIO device which converts the analog input voltage signal as per the algorithm developed with virtual instrumentation based programming and provides the corresponding 4-20 mA output current signal in the analog output terminal of the device.Results show that input-output i.e.temperature-current relationship is linear.This low cost developed transmitter is very simple and it can be recommended for academic,scientific and industrial development of data acquisition systems,control and analysis of instruments.展开更多
This paper presents the modelling of transduction heaters using the TEC (transformer equivalent circuit) model and FEA (finite element analysis). Each model was used to simulate a set oftransduction heating experi...This paper presents the modelling of transduction heaters using the TEC (transformer equivalent circuit) model and FEA (finite element analysis). Each model was used to simulate a set oftransduction heating experiments and the results compared. Analysis of the TEC calculated results suggested modification of three parameters: the secondary resistance, the core tube eddy current resistance and the core tube magnetizing reactance. The improved TEC model was then used to design, build and test a 6 kW transduction heater. The measured results are compared with calculated results from the TEC and FEA models. The TEC model accurately predicts the performance of the heater.展开更多
At Siemens, an in-house CFD (computational fluid dynamics) code UniFlow is used to investigate fluid flow and heat transfer in oil-immersed and dry-type transformers, as well as transformer components like windings,...At Siemens, an in-house CFD (computational fluid dynamics) code UniFlow is used to investigate fluid flow and heat transfer in oil-immersed and dry-type transformers, as well as transformer components like windings, cores, tank walls, and radiators. This paper outlines its physical models and numerical solution methods. Furthermore, for oil-immersed transformers, it presents an application to a HV (high voltage) winding in a traction transformer of locomotives, cooled by synthetic ester.展开更多
Paper deals about testing of device with gravity assisted heat pipes and about researching of wick heat pipes used to effective heat transfers from power switches of energy converter. At first, to simulate ambient con...Paper deals about testing of device with gravity assisted heat pipes and about researching of wick heat pipes used to effective heat transfers from power switches of energy converter. At first, to simulate ambient condition was designed thermostatic chamber where was monitoring temperature course on main parts of cooling device (energy converter, air cooler and heat pipes) at various position of cooling device. It was found, if the cooling device is in tilt position the cooling performance is better. But if the tilt angel of gravity assisted heat pipe is higher the heat transfer is lower. From reason improve heat transfer cooling device at tilt angle are manufactured heat pipes with the sintered, mesh screen and grooved capillary structures and tested their thermal performance at vertical and tilt angel 45~ position by calorimetric method. Article describes manufacturing process and thermal performance measuring method of wick heat pipes. This experiment testify that the wick heat pipe is able operate at tilt angle position than gravity assisted heat pipe and application of wick heat pipes into cooling device will improve his cooling performance.展开更多
Helical-coil is a common structure of heat exchanger unit in phase change heat accumulator and usually has the equal coil pitch between adjacent coils. Its thermal performances could be improved by improving the unifo...Helical-coil is a common structure of heat exchanger unit in phase change heat accumulator and usually has the equal coil pitch between adjacent coils. Its thermal performances could be improved by improving the uniformity of the phase change material (PCM) temperature distribution. Thus, a novel non-equidistant helical-coil structure was proposed in this study. Its coil pitch decreased along the flow direction of heat transfer fluid, which made the heat exchange area in unit volume increase to match the decreasing temperature difference between the heat transfer fluid and PCM. The structure was optimized using numerical simulation. An experimental system was developed and the experiment results indicated that the proposed non-equidistant helical-coil heat accumulator was more effective than equidistant helical-coil for latent heat storage. The uniformity of the temperaalre distribution was also confirmed by simulation results.展开更多
Close-contact melting processes of phase change material (PCM) inside vertical cylindrical capsule are studied. PCM are heated by the capsule isothermally at the bottom and side. The theoretical formulas of the meltin...Close-contact melting processes of phase change material (PCM) inside vertical cylindrical capsule are studied. PCM are heated by the capsule isothermally at the bottom and side. The theoretical formulas of the melting rate and thickness of liquid layer during the heat transfer process are obtained by analysis, which are convenient for engineering predictions. Finally, the factors that affect melting are discussed, and conclusions are drawn.展开更多
文摘We present a 1 × 4 Y-branch digital optical switch in which S-bend variable optical attenuators are integrated. The S-bend waveguides, which are always introduced to connect the switch and the standard fiber array, are made use of and designed as variable optical attenuators. A compact device with low crosstalk and larger branching-angle is obtained. The device is fabricated on the thermo-optic polymer materials,and the performance of the device is measured. With an applied driving power of less than 200mW, the device has a low crosstalk of less than - 35dB at a wavelength of 1.55 μm.
基金Project supported by the National Natural Science Foundation of China (Grant No 60676033).
文摘This paper describes the research on the materials and design methods for advanced smart radiator devices (SRDs) on large-area flexible substrates utilized on spacecraft. The functional material is thermochromic vanadium dioxide. The coating design of SRD is similar to the design of broadband filter coatings in a mid-infrared region. The multilayer coatings have complex structures. Coating materials must be highly transparent in a required spectrum region and also mechanically robust enough to endure the influence from the rigorous environments of outer space. The number of layers must be very small, suitable for the deposition on large-area flexible substrates. All the coatings are designed initially based on optical calculation and practical experience, and then optimized by the TFCALC software. Several designs are described and compared with each other. The results show that the emittance variability of the designed SRDs is great than 400%, more advanced than the reported ones.
基金supported by the National Natural Science Foundation of China(Nos.U1933115,U2133203)
文摘To solve the multi-variable and multi-objective optimization problem in the thermal design process of the dual-input aeronautic static inverter,an optimization method based on the combination of the multi-objective evolutionary algorithm based on decomposition(MOEA/D)and the fuzzy set theory is proposed.The heat transfer path of the power device is analyzed and an equivalent heat circuit is conducted.We take junction temperature of the power device,mass,and cost of the heat sink as optimization goals,and take the heat sink structure parameters as design variables to conduct thermal optimization based on MOEA/D.This paper carries out a comparative study,and the results show that the proposed improved algorithm can meet the different requirements for multi-objective weights,and have good rapidity and robustness.
文摘In this paper,we have presented a simple approach for experimental and application study on LabVIEW based temperature transmitter with NI myRIO device in the laboratory.In this work,to study the small range of temperature(40-100℃)although different temperature sensors can be used still,we have used here a K-type thermocouple as the measuring temperature sensor.The analog output voltage of thermocouple is amplified by instrumentation amplifier and the amplified signal is fed to the analog input of NI myRIO device which converts the analog input voltage signal as per the algorithm developed with virtual instrumentation based programming and provides the corresponding 4-20 mA output current signal in the analog output terminal of the device.Results show that input-output i.e.temperature-current relationship is linear.This low cost developed transmitter is very simple and it can be recommended for academic,scientific and industrial development of data acquisition systems,control and analysis of instruments.
文摘This paper presents the modelling of transduction heaters using the TEC (transformer equivalent circuit) model and FEA (finite element analysis). Each model was used to simulate a set oftransduction heating experiments and the results compared. Analysis of the TEC calculated results suggested modification of three parameters: the secondary resistance, the core tube eddy current resistance and the core tube magnetizing reactance. The improved TEC model was then used to design, build and test a 6 kW transduction heater. The measured results are compared with calculated results from the TEC and FEA models. The TEC model accurately predicts the performance of the heater.
文摘At Siemens, an in-house CFD (computational fluid dynamics) code UniFlow is used to investigate fluid flow and heat transfer in oil-immersed and dry-type transformers, as well as transformer components like windings, cores, tank walls, and radiators. This paper outlines its physical models and numerical solution methods. Furthermore, for oil-immersed transformers, it presents an application to a HV (high voltage) winding in a traction transformer of locomotives, cooled by synthetic ester.
文摘Paper deals about testing of device with gravity assisted heat pipes and about researching of wick heat pipes used to effective heat transfers from power switches of energy converter. At first, to simulate ambient condition was designed thermostatic chamber where was monitoring temperature course on main parts of cooling device (energy converter, air cooler and heat pipes) at various position of cooling device. It was found, if the cooling device is in tilt position the cooling performance is better. But if the tilt angel of gravity assisted heat pipe is higher the heat transfer is lower. From reason improve heat transfer cooling device at tilt angle are manufactured heat pipes with the sintered, mesh screen and grooved capillary structures and tested their thermal performance at vertical and tilt angel 45~ position by calorimetric method. Article describes manufacturing process and thermal performance measuring method of wick heat pipes. This experiment testify that the wick heat pipe is able operate at tilt angle position than gravity assisted heat pipe and application of wick heat pipes into cooling device will improve his cooling performance.
基金supported by the National Natural Science Foundation of China(Grant No.51576187)Fundamental Research Funds for the Central Universities(Grant No.WK2090130016)
文摘Helical-coil is a common structure of heat exchanger unit in phase change heat accumulator and usually has the equal coil pitch between adjacent coils. Its thermal performances could be improved by improving the uniformity of the phase change material (PCM) temperature distribution. Thus, a novel non-equidistant helical-coil structure was proposed in this study. Its coil pitch decreased along the flow direction of heat transfer fluid, which made the heat exchange area in unit volume increase to match the decreasing temperature difference between the heat transfer fluid and PCM. The structure was optimized using numerical simulation. An experimental system was developed and the experiment results indicated that the proposed non-equidistant helical-coil heat accumulator was more effective than equidistant helical-coil for latent heat storage. The uniformity of the temperaalre distribution was also confirmed by simulation results.
文摘Close-contact melting processes of phase change material (PCM) inside vertical cylindrical capsule are studied. PCM are heated by the capsule isothermally at the bottom and side. The theoretical formulas of the melting rate and thickness of liquid layer during the heat transfer process are obtained by analysis, which are convenient for engineering predictions. Finally, the factors that affect melting are discussed, and conclusions are drawn.