The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geo...The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geometry optimization is performed using the unrestricted second-order Moller-Plesset perturbation method and the single-point energy is computed us- ing the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method. Results indicate that the main reaction channel is C3Hs+O(^3p)→i- C3HT+OH. Based upon the ab initio data, thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies, and the branching ratios of the reaction are also calculated in the present work. Furthermore, the isotope effects of the title reaction are calculated and discussed. The present work reveals the reaction mechanism of hydrogenabstraction from propane involving reaction channel competitions is helpful for the understanding of propane combustion.展开更多
The mainstream depth of a return flow can be viewed as an intrinsic depth of horizontal convection. By using a theoretical tube model combined with the application of the Maximum Entropy Production Principle (MaxEPP) ...The mainstream depth of a return flow can be viewed as an intrinsic depth of horizontal convection. By using a theoretical tube model combined with the application of the Maximum Entropy Production Principle (MaxEPP) in thermodynamics, the following statements can be made. Under fixed external forcing, the system chooses a particular depth as the mainstream depth of its return flow, the depth of which not only satisfies the maximum circulation rate and the maximum heat transport, but also satisfies the maximum entropy production rate. A comparison between this intrinsic depth and the container height leads to the definition of a relative partial and full-penetration pattern of the circulation. Moreover, this intrinsic depth is found to vary with the external forcing; the regulation of this variation is related to the Modified Rayleigh number.展开更多
For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear l...For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear loads connected to the electric networks.Naturally,a centralized control coordination strategy was proposed for the purpose of high facility utilization,good harmonic compensation ability and unwanted overcompensation condition.Based on a vector decoupling control scheme and generalized instantaneous reactive power theory,the solution was to allocate the harmonic eliminating task for every inverter according to the instantaneous power margin of each.The grid current always keeps sinusoidal in spite of non-linear load change and output active power change for any inverter.The simulation results validate the efficacy of the proposed coordination strategy.展开更多
A new analytical method for springback of small curvature plane bending is addressed with unloading rule of classical elastic-plastic theory and principle of strain superposition.We start from strain analysis of plane...A new analytical method for springback of small curvature plane bending is addressed with unloading rule of classical elastic-plastic theory and principle of strain superposition.We start from strain analysis of plane bending which has initial curvature,and the theoretic derivation is on the widely applicable basic hypotheses.The results are unified to geometry constraint equations and springback equation of plane bending,which can be evolved to straight beam plane bending and pure bending.The expanding and setting round process is one of the situations of plane bending,which is a bend-stretching process of plane curved beam.In the present study,springback equation of plane bending is used to analyze the expanding and setting round process,and the results agree with the experimental data.With a reasonable prediction accuracy,this new analytical method for springback of plane bending can meet the needs of applications in engineering.展开更多
This paper deals with the approximate controllability of semilinear neutral functional differential systems with state-dependent delay. The fractional power theory and α-norm are used to discuss the problem so that t...This paper deals with the approximate controllability of semilinear neutral functional differential systems with state-dependent delay. The fractional power theory and α-norm are used to discuss the problem so that the obtained results can apply to the systems involving derivatives of spatial variables. By methods of functional analysis and semigroup theory, sufficient conditions of approximate controllability are formulated and proved. Finally, an example is provided to illustrate the applications of the obtained results.展开更多
Theoretical investigations have been carried out on the mechanism and kinetics for the reaction of CF 3 CHO + Cl using duallevel direct dynamics method. The potential energy surface information was obtained at the MCQ...Theoretical investigations have been carried out on the mechanism and kinetics for the reaction of CF 3 CHO + Cl using duallevel direct dynamics method. The potential energy surface information was obtained at the MCQCISD/3//MP2/cc-pVDZ level and the kinetic calculations were done using variational transition state theory with interpolated single-point energy (VTST-ISPE) approach. The calculated results show that the reaction proceeds primarily via the H-abstraction channel, while the Cl-addition channel is unfavorable due to the higher barriers. The improved canonical variational transition-state theory (ICVT) with the small-curvature tunneling correction (SCT) was used to calculate the rate constants. The theoretical rate constants at room temperature are in general agreement with the experimental values. A three-parameter rate constant expression was fitted over a wide temperature range of 200-2000 K.展开更多
文摘The reaction of C3H8+O(^3p)→C3HT+OH is investigated using ab initio calculation and dynamical methods. Electronic structure calculations for all stationary points are obtained using a dual-level strategy. The geometry optimization is performed using the unrestricted second-order Moller-Plesset perturbation method and the single-point energy is computed us- ing the coupled-cluster singles and doubles augmented by a perturbative treatment of triple excitations method. Results indicate that the main reaction channel is C3Hs+O(^3p)→i- C3HT+OH. Based upon the ab initio data, thermal rate constants are calculated using the variational transition state theory method with the temperature ranging from 298 K to 1000 K. These calculated rate constants are in better agreement with experiments than those reported in previous theoretical studies, and the branching ratios of the reaction are also calculated in the present work. Furthermore, the isotope effects of the title reaction are calculated and discussed. The present work reveals the reaction mechanism of hydrogenabstraction from propane involving reaction channel competitions is helpful for the understanding of propane combustion.
基金Supported by the The National Basic Research Program (973 Program) (Nos. 2007CB816004, 2005CB422302)the National Outstanding Youth Natural Science Foundation of China (No. 40725017)
文摘The mainstream depth of a return flow can be viewed as an intrinsic depth of horizontal convection. By using a theoretical tube model combined with the application of the Maximum Entropy Production Principle (MaxEPP) in thermodynamics, the following statements can be made. Under fixed external forcing, the system chooses a particular depth as the mainstream depth of its return flow, the depth of which not only satisfies the maximum circulation rate and the maximum heat transport, but also satisfies the maximum entropy production rate. A comparison between this intrinsic depth and the container height leads to the definition of a relative partial and full-penetration pattern of the circulation. Moreover, this intrinsic depth is found to vary with the external forcing; the regulation of this variation is related to the Modified Rayleigh number.
基金Project(51107111)supported by the National Natural Science Foundation of China
文摘For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear loads connected to the electric networks.Naturally,a centralized control coordination strategy was proposed for the purpose of high facility utilization,good harmonic compensation ability and unwanted overcompensation condition.Based on a vector decoupling control scheme and generalized instantaneous reactive power theory,the solution was to allocate the harmonic eliminating task for every inverter according to the instantaneous power margin of each.The grid current always keeps sinusoidal in spite of non-linear load change and output active power change for any inverter.The simulation results validate the efficacy of the proposed coordination strategy.
基金supported by the National Natural Science Foundation of China(Grant No.50805126)the Natural Science Foundation of Hebei Province(Grant No.E2009000389)
文摘A new analytical method for springback of small curvature plane bending is addressed with unloading rule of classical elastic-plastic theory and principle of strain superposition.We start from strain analysis of plane bending which has initial curvature,and the theoretic derivation is on the widely applicable basic hypotheses.The results are unified to geometry constraint equations and springback equation of plane bending,which can be evolved to straight beam plane bending and pure bending.The expanding and setting round process is one of the situations of plane bending,which is a bend-stretching process of plane curved beam.In the present study,springback equation of plane bending is used to analyze the expanding and setting round process,and the results agree with the experimental data.With a reasonable prediction accuracy,this new analytical method for springback of plane bending can meet the needs of applications in engineering.
基金supported by the National Natural Science Foundation of China(Nos.11171110,11371087)the Science and Technology Commission of Shanghai Municipality(No.13dz2260400)the Shanghai Leading Academic Discipline Project(No.B407)
文摘This paper deals with the approximate controllability of semilinear neutral functional differential systems with state-dependent delay. The fractional power theory and α-norm are used to discuss the problem so that the obtained results can apply to the systems involving derivatives of spatial variables. By methods of functional analysis and semigroup theory, sufficient conditions of approximate controllability are formulated and proved. Finally, an example is provided to illustrate the applications of the obtained results.
基金supported by the National Natural Science Foundation of China (20973077, 20303007)the Program for New Century Excellent Talents in University (NCET)
文摘Theoretical investigations have been carried out on the mechanism and kinetics for the reaction of CF 3 CHO + Cl using duallevel direct dynamics method. The potential energy surface information was obtained at the MCQCISD/3//MP2/cc-pVDZ level and the kinetic calculations were done using variational transition state theory with interpolated single-point energy (VTST-ISPE) approach. The calculated results show that the reaction proceeds primarily via the H-abstraction channel, while the Cl-addition channel is unfavorable due to the higher barriers. The improved canonical variational transition-state theory (ICVT) with the small-curvature tunneling correction (SCT) was used to calculate the rate constants. The theoretical rate constants at room temperature are in general agreement with the experimental values. A three-parameter rate constant expression was fitted over a wide temperature range of 200-2000 K.