期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于变环量方法的农用轴流风机设计及性能优化
1
作者 吴乐天 邱绵靖 +1 位作者 刘志伟 丁涛 《农业工程学报》 EI CAS CSCD 北大核心 2024年第20期210-218,共9页
随着农业设施养殖空气过滤装置使用的普及,对高压农用轴流风机的需求也随之提升。为了提高农用轴流风机的气动性能并扩大工作压力范围,利用变环量设计理论,通过风洞试验和数值模拟,对风机叶片进行了重新设计。旨在改变现有叶片轮毂处结... 随着农业设施养殖空气过滤装置使用的普及,对高压农用轴流风机的需求也随之提升。为了提高农用轴流风机的气动性能并扩大工作压力范围,利用变环量设计理论,通过风洞试验和数值模拟,对风机叶片进行了重新设计。旨在改变现有叶片轮毂处结构形式,改善农用轴流风机内部流态,达到提升农业轴流风机气动性能和扩大稳定运行范围的目的。该研究以0.91 m农用轴流风机尺寸及目标风量为设计参数,利用变环量方法设计了一款叶片。通过单因素和响应面分析方法,研究了轮毂直径d、安装角α和叶片数n结构参数对风机性能和流场的影响。最佳工艺参数为d=260 mm,α=-0.369°,n=4片。数值模拟结果表明,优化后的轴流风机性能优于设计轴流风机,扩大了高压区稳定运行范围。样机试验测试表明,在高压(120 Pa)下,优化风机相较于原型轴流风机的风量提高了163%(达到18 710.99m3/h),能效比提高了18.9%(达到1.94 m3/(h·W))。该研究证明了变环量在农用轴流风机设计中的可行性,结构参数的优化可进一步降低风机的内部涡流。优化后的轴流风机减少了内部流场的二次流,提高了叶片的做功能力,改善了风机的气动性能,确保轴流风机在农业应用中能够更高效地实现空气流通与调控。 展开更多
关键词 农用机械 农用轴流风机 数值模拟 试验 气动性能 变环量方法
下载PDF
DEM Production/Updating Based on Environmental Variables Modeling and Conflation of Data Sources 被引量:1
2
作者 Tomaz Podobnikar 《Journal of Civil Engineering and Architecture》 2010年第11期33-44,共12页
Availability of digital elevation models (DEMs) of a high quality is becoming more and more important in spatial studies. Standard methods for DEM creation use only intentionally acquired data sources. Two approache... Availability of digital elevation models (DEMs) of a high quality is becoming more and more important in spatial studies. Standard methods for DEM creation use only intentionally acquired data sources. Two approaches which employ various types of data sets for DEM production are proposed: (1) Method of weighted sum of different data sources with morphological enhancement that conflates any additional data sources to principal DEM, and (2) DEM updating methods of modeling absolute and relative temporal changes, considering landslides, earthquakes, quarries, watererosion, building and highway constructions, etc. Spatial modeling of environmental variables concerning both approaches for (a) quality control of data sources, considering regions, (b) pre-processing of data sources, and (c) processing of the final DEM, have been applied. The variables are called rate of karst, morphologic roughness (modeled from slope, profile curvature and elevation), characteristic features, rate of forestation, hydrological network, and rate of urbanization. Only the variables evidenced as significant were used in spatial modeling to generate homogeneous regions in spatial modeling a-c. The production process uses different regions to define high quality conflation of data sources to the final DEM. The methodology had been confirmed by case studies. The result is an overall high quality DEM with various well-known parameters. 展开更多
关键词 Digital elevation/terrain model environmental variables data quality data conflation/integration spatial modeling.
下载PDF
An Extended Closed-loop Subspace Identification Method for Error-in-variables Systems 被引量:1
3
作者 刘涛 邵诚 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1136-1141,共6页
A closed-loop subspace identification method is proposed for industrial systems subject to noisy input-output observations, known as the error-in-variables (EIV) problem. Using the orthogonal projection approach to el... A closed-loop subspace identification method is proposed for industrial systems subject to noisy input-output observations, known as the error-in-variables (EIV) problem. Using the orthogonal projection approach to eliminate the noise influence, consistent estimation is guaranteed for the deterministic part of such a system. A strict proof is given for analyzing the rank condition for such orthogonal projection, in order to use the principal component analysis (PCA) based singular value decomposition (SVD) to derive the extended observability matrix and lower triangular Toeliptz matrix of the plant state-space model. In the result, the plant state matrices can be retrieved in a transparent manner from the above matrices. An illustrative example is shown to demonstrate the effectiveness and merits of the proposed subspace identification method. 展开更多
关键词 closed-loop error-in-variables system subspace identification extended observability matrix orthogonal projection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部