In the case of electric or tram traction vehicles, the energy for propulsion purposes, as well as all other purposes, is processed and delivered via traction substations. Knowledge of the course of traction substation...In the case of electric or tram traction vehicles, the energy for propulsion purposes, as well as all other purposes, is processed and delivered via traction substations. Knowledge of the course of traction substation loading, especially at the stage of its design, is an extremely important issue because of the choice of the processing equipment of the main circuit or protection devices. In the range of investigations of railway traction substation B in vicinity of Cracow (Poland), the measurements of current load in hours 4:00 a.m.-8:00 p.m. were realized. The measurements for the analysis were chosen from those realized between 6:00 a.m.-8:00 a.m. (the morning rush time). Due to the sampling of 2 h summit with a frequency of 2 kHz, the recorded data set contains 1.44 ~ 107 elements. Therefore, the necessary transformation of data was to lower frequency 1 Hz, 10 Hz and 50 Hz. The results of the analysis presented below indicate the effect of such conduct on the obtained results for the parameters of time series models. In view of the unsatisfactory effects of the polynomial approximation, there is a need to seek a more efficient approximation method for achieving the optimum compatibility with the measured process. Continued research should lead to the formulation of procedures, which will determine an acceptable accuracy of the expected variability of traction substation loads.展开更多
This paper investigates the performance of SAPFs (shunt active power filters) which are introduced in order to address the quality issues in electrified railway supply systems. These filters can be installed at eith...This paper investigates the performance of SAPFs (shunt active power filters) which are introduced in order to address the quality issues in electrified railway supply systems. These filters can be installed at either the S/S (substation) end or at the SP (sectioning post) of the railway feeding power system. In this investigation novel control algorithms, based on the synchronously rotating frame of reference, are proposed for the case when the SAPF is installed at the substation end and its performance is assessed. The effectiveness of the proposed control algorithms are illustrated via Matlab/SimPower computer simulations and validated via comparisons with other publications. This investigation demonstrated that when the SAPF is installed at the substation side, it can effectively compensate for the higher harmonic supply current. In addition, the reactive power demand is fully compensated for, leading to close to unity power factor. However, the voltage drop/sag at the locomotive power supply feed point is only partially compensated for.展开更多
文摘In the case of electric or tram traction vehicles, the energy for propulsion purposes, as well as all other purposes, is processed and delivered via traction substations. Knowledge of the course of traction substation loading, especially at the stage of its design, is an extremely important issue because of the choice of the processing equipment of the main circuit or protection devices. In the range of investigations of railway traction substation B in vicinity of Cracow (Poland), the measurements of current load in hours 4:00 a.m.-8:00 p.m. were realized. The measurements for the analysis were chosen from those realized between 6:00 a.m.-8:00 a.m. (the morning rush time). Due to the sampling of 2 h summit with a frequency of 2 kHz, the recorded data set contains 1.44 ~ 107 elements. Therefore, the necessary transformation of data was to lower frequency 1 Hz, 10 Hz and 50 Hz. The results of the analysis presented below indicate the effect of such conduct on the obtained results for the parameters of time series models. In view of the unsatisfactory effects of the polynomial approximation, there is a need to seek a more efficient approximation method for achieving the optimum compatibility with the measured process. Continued research should lead to the formulation of procedures, which will determine an acceptable accuracy of the expected variability of traction substation loads.
文摘This paper investigates the performance of SAPFs (shunt active power filters) which are introduced in order to address the quality issues in electrified railway supply systems. These filters can be installed at either the S/S (substation) end or at the SP (sectioning post) of the railway feeding power system. In this investigation novel control algorithms, based on the synchronously rotating frame of reference, are proposed for the case when the SAPF is installed at the substation end and its performance is assessed. The effectiveness of the proposed control algorithms are illustrated via Matlab/SimPower computer simulations and validated via comparisons with other publications. This investigation demonstrated that when the SAPF is installed at the substation side, it can effectively compensate for the higher harmonic supply current. In addition, the reactive power demand is fully compensated for, leading to close to unity power factor. However, the voltage drop/sag at the locomotive power supply feed point is only partially compensated for.